外文科技图书简介
当前位置:首页 > 检索结果 >文献详细内容

书名:Electrical properties of materials

责任者:L. Solymar  |  D. Walsh  |  R. R. A. Syms.  |  Syms, Richard R. A.

ISBN\ISSN:9780198702771,9780198702788 

出版时间:2014

出版社:Oxford University Press

分类号:一般工业技术

版次:9th ed.


前言

The major change relative to all of the previous editions is that Professor Richard Syms of Imperial College has joined us as an author. There are new topics added and old topics updated, but the style remains as light as ever. Topics that needed considerable updating are semiconductor technology, semiconductor devices, nanoelectronics, plasma etching, ferroelectric materi- als, and spintronics.
We have been aware of many physical phenomena of interest, which we have failed to include in the past because, in our opinion at the time, their application prospects were not strong enough. Some of these have now come to the fore and we have included them; they are dielectrophoresis, Raman spectroscopy, thermoelectricity, and pyroelectricity.
We believe that one of the most important applications of the electrical properties of materials is in the field of memory elements. We have previ- ously described these in the respective chapters, e.g. semiconductor memories in the chapter on semiconductor devices and magnetic memories in the chapter on magnetism. We felt that this time, in order to emphasise their similarities and differences, we needed to collect them into a separate chapter, which has turned out to be an appendix. We have also added another appendix describing the two major directions m medical imaging: computed tomography (CT) and magnetic resonance imaging (MRI).
We have to express here our gratitude to our wives who were willing to put up with the long hours we spent bringing this edition up to date.

查看更多

目录

Data on specific materials in text xiii

Introduction xv

1 The electron as a particle

1.1 Introduction 1

1.2 The effect of an electric field—conductivity and Ohm's law 2

1.3 The hydrodynamic model of electron flow 4

1.4 The Hall effect 5

1.5 Electromagnetic waves in solids 6

1.6 Waves in the presence of an applied magnetic field: cyclotron resonance 13

1.7 Plasma waves 16

1.8 Johnson noise 19

1.9 Heat 21

Exercises 23

2 The electron as a wave

2.1 Introduction 25

2.2 The electron microscope 28

2.3 Some properties of waves 29

2.4 Applications to electrons 31

2.5 Two analogies 33

Exercises 34

3 The electron

3.1 Introduction 36

3.2 Schrodinger's equation 38

3.3 Solutions of Schrbdinger's equation 39

3.4 The electron as a wave 40

3.5 The electron as a particle 41

3.6 The electron meeting a potential barrier 41

3.7 Two analogies 44

3.8 The electron in a potential well 45

39 The potential well with a rigid wall 47

3.10 The uncertainty relationship 47

3.11 Philosophical implications 48

Exercises 50

4 The hydrogen atom and the periodic table

4.1 The hydrogen atom 53

4.2 Quantum numbers 58

4.3 Electron spin and Pauli's exclusion principle 59

4.4 The periodic table 59

Exercises 64

5 Bonds

5.1 Introduction 66

5.2 General mechanical properties of bonds 67

5.3 Bond types 69

5.3.1 Ionic bonds 69

5.3.2 Metallic bonds 70

5.3.3 The covalent bond 70

5.3.4 The van der Waals bond 73

5.3.5 Mixed bonds 74

5.3.6 Carbon again 74

5.4 Feynman's coupled mode approach 75

5.5 Nuclear forces 80

5.6 The hydrogen molecule 81

5.7 An analogy 82

Exercises 82

6 The free electron theory of metals

6.1 Free electrons 84

6.2 The density of states and the Fermi-Dirac distribution 85

6.3 The specific heat of electrons 88

6.4 The work function 89

6.5 Thermionic emission 89

6.6 The Schottky effect 92

6.7 Field emission 95

6.8 The field-emission microscope 95

6.9 The photoelectric effect 97

6.10 Quartz-halogen lamps 97

6.11 The junction between two metals 98

Exercises 99

7 The band theory of solids

7.1 Introduction 101

7.2 The Kronig-Penney model 102

7.3 The Ziman model 106

7.4 The Feynman model 109

7.5 The effective mass 112

7.6 The effective number of free electrons 114

7.7 The number of possible states per band 115

7.8 Metals and insulators 117

7.9 Holes 117

7.10 Divalent metals 119

7.11 Finite temperatures 120

7.12 Concluding remarks 121

Exercises 122

8 Semiconductors

8.1 Introduction 123

8.2 Intrinsic semiconductors 123

8.3 Extrinsic semiconductors 128

8.4 Scattering 132

8.5 A relationship between electron and hole densities 134

8.6 III-V and II-VI compounds 136

8.7 Non-equilibrium processes 140

8.8 Real semiconductors 141

8.9 Amorphous semiconductors 143

8.10 Measurement of semiconductor properties 143

      8.10.1 Mobility 143

      8.10.2 Hall coefficient 146

      8.10.3 Effective mass 146

      8.10.4 Energy gap 147

      8.10.5 Carrier lifetime 151

8.11 Preparation of pure and controlled-impurity single-crystal semiconductors 151

      8.11.1 Crystal growth from the melt 151

      8.11.2 Zone refining 152

      8.11.3 Modern methods of silicon purification 154

      8.11.4 Epitaxial growth 154

      8.11.5 Molecular beam epitaxy 156

      8.11.6 Metal-organic chemical vapour deposition 156

      8 11.7 Hydride vapour phase epitaxy (HYPE) for nitride devices 157

Exercises 158

9 Principles of semiconductor devices

9.1 Introduction 161

9.2 The p-n junction in equilibrium 161

9.3 Rectification 166

9.4 Injection 168

9.5 Junction capacity 170

9.6 The transistor 171

9.7 Metal-semiconductor junctions 176

9.8 The role of surface states; real metal-semiconductor junctions 178

9.9 Metal-insulator-semiconductor junctions 180

9.10 The tunnel diode 183

9.11 The backward diode 186

9.12 The Zener diode and the avalanche diode 186

      9.12.1 Zener breakdown 187

      9.12.2 Avalanche breakdown 187

9.13 Varactor diodes 188

9.14 Field-effect transistors 189

9.15 Heterostructures 194

9.16 Charge-coupled devices 198

9.17 Silicon controlled rectifier 200

9.18 The Gunn effect 201

9.19 Strain gauges 204

9.20 Measurement of magnetic field by the Hall effect 205

9.21 Gas sensors 205

9.22 Microelectronic circuits 206

9.23 Plasma etching 210

9.24 Recent techniques for overcoming limitations 212

9.25 Building in the third dimension 213

9.26 Microelectro-mechanical systems (MEMS) 215

      9.26.1 A movable mirror 215

      9.26.2 A mass spectrometer on a chip 216

9.27 Nanoelectronics 218

9.28 Social implications 222

Exercises 223

10 Dielectric materials

10.1 Introduction 225

10.2 Macroscopic approach 225

10.3 Microscopic approach 226

10.4 Types of polarization 227

10.5 The complex dielectric constant and the refractive index 228

10.6 Frequency response 229

10.7 Anomalous dispersion 230

10.8 Polar and non-polar materials 231

10.9 The Debye equation 233

10.10 The effective field 234

10.11 Acoustic waves 236

10.12 Dielectric breakdown 240

      10.12.1 Intrinsic breakdown 240

      10.12.2 Thermal breakdown 240

      10.12.3 Discharge breakdown 241

10.13 Piezoelectricity, pyroelectricity, and ferroelectricity 241

      10.13.1 Piezoelectricity 241

      10.13.2 Pyroelectricity 247

      10.13.3 Ferroelectrics 248

10.14 Interaction of optical phonons with drifting electrons 249

10.15 Optical fibres 250

10.16 The Xerox process 252

10.17 Liquid crystals 252

10.18 Dielectrophoresis 254

Exercises 256

11 Magnetic materials

11.1 Introduction 259

11.2 Macroscopic approach 260

11.3 Microscopic theory (phenomenological) 260

11.4 Domains and the hysteresis curve 264

11.5 Soft magnetic materials 268

11.6 Hard magnetic materials (permanent magnets) 270

11.7 Microscopic theory (quantum-mechanical) 273

      11.7.1 The Stern-Gerlach experiment 278

      11.7.2 Paramagnetism 278

      11.7.3 Paramagnetic solids 280

      11.7.4 Antiferromagnetism 281

      11.7.5 Ferromagnetism 281

      11.7.6 Ferrimagnetism 282

      11.7.7 Garnets 282

      11.7.8 Helimagnetism 282

11.8 Magnetic resonance 282

      11.8.1 Paramagnetic resonance 282

      11.8.2 Electron spin resonance 283

      11.8.3 Ferromagnetic, antiferromagnetic, and ferrimagnetic resonance 283

      11.8.4 Nuclear magnetic resonance 283

      11.8.5 Cyclotron resonance 284

11.9 The quantum Hall effect 284

11.10 Magnetoresistance 286

11.11 Spintronics 287

      11.11.1 Spin current 287

      11.11.2 Spin tunnelling 289

      11.11.3 Spin waves and magnons 290

      11.11.4 Spin Hall effect and its inverse 290

      11.11.5 Spin and light 290

      11.11.6 Spin transfer torque 291

11.12 Some applications 291

      11.12.1 Isolators 291

      11.12.2 Sensors 292

      11.12.3 Magnetic read-heads 292

      11.12.4 Electric motors 293

Exercises 293

12 Lasers

12.1 Equilibrium 295

12.2 Two-state systems 295

12.3 Lineshape function 299

12.4 Absorption and amplification 301

12.5 Resonators and conditions of oscillation 301

12.6 Some practical laser systems 302

      12.6.1 Solid state lasers 303

      12.6.2 The gaseous discharge laser 304

      12.6.3 Dye lasers 305

      12.6.4 Gas-dynamic lasers 306

      12.6.5 Excimer lasers 307

      12.6.6 Chemical lasers 307

12.7 Semiconductor lasers 307

      12.7.1 Fundamentals 307

      12.7.2 Wells, wires, and dots 312

      12.7.3 Bandgap engineering 316

      12.7.4 Quantum cascade lasers 318

12.8 Laser modes and control techniques 319

      12.8.1 Transverse modes 319

      12.8.2 Axial modes 320

      12.8.3 Q switching 321

      12.8.4 Cavity dumping 321

      12.8.5 Mode locking 321

12.9 Parametric oscillators 322

12.10 Optical fibre amplifiers 323

12.11 Masers 324

12.12 Noise 326

12.13 Applications 326

      12.13.1 Nonlinear optics 327

      12.13.2 Spectroscopy 327

      12.13.3 Photochemistry 327

      12.13.4 Study of rapid events 328

      12.13.5 Plasma diagnostics 328

      12.13.6 Plasma heating 328

      12.13.7 Acoustics 328

      12.13.8 Genetics 328

      12.13.9 Metrology 328

      12.13.10 Manipulation of atoms by light 328

      12.13.11 Optical radar 329

      12.13.12 Optical discs 329

      12.13.13 Medical applications 329

      12.13.14 Machining 330

      12.13.15 Sensors 330

      12.13.16 Communications 331

      12.13.17 Nuclear applications 331

      12.13.18 Holography 332

      12.13.19 Raman scattering 334

12.14 The atom laser 335

Exercises 336

13 Optoelectronics

13.1 Introduction 338

13.2 Light detectors 339

13.3 Light emitting diodes (LEDs) 341

13.4 Electro-optic, photorefractive, and nonlinear materials 345

13.5 Volume holography and phase conjugation 346

13.6 Acousto-optic interaction 351

13.7 Integrated optics 353

      13.7.1 Waveguides 354

      13.7.2 Phase shifter 354

      13.7.3 Directional coupler 355

      13.7.4 Filters 357

13.8 Spatial light modulators 357

13.9 Nonlinear Fabry-Perot cavities 359

13.10 Optical switching 362

13.11 Electro-absorption in quantum well structures 364

      13.11.1 Excitons 364

      13.11.2 Excitons in quantum wells 365

      13.11.3 Electro-absorption 365

      13.11.4 Applications 367

Exercises 369

14 Superconductivity

14.1 Introduction 371

14.2 The effect of a magnetic field 373

      14.2.1 The critical magnetic field 373

      14.2.2 The Meissner effect 374

14.3 Microscopic theory 375

14.4 Thermodynamical treatment 376

14.5 Surface energy 381

14.6 The Landau-Ginzburg theory 382

14.7 The energy gap 389

14.8 Some applications 393

14.8.1 High-field magnets 393

      14.8.2 Switches and memory elements 394

      14.8.3 Magnetometers 394

      14.8.4 Metrology 395

      14.8.5 Suspension systems and motors 395

      14.8.6 Radiation detectors 395

      14.8.7 Heat valves 396

14.9 High- T, superconductors 396

14.10 New superconductors 401

Exercises 403

15 Artificial materials or metamaterials

15.1 Introduction 404

15.2 Natural and artificial materials 405

15.3 Photonic bandgap materials 407

15.4 Equivalent plasma frequency of a wire medium 408

15.5 Resonant elements for metamaterials 410

15.6 Polarizability of a current-carrying resonant loop 411

15.7 Effective permeability 412

15.8 Effect of negative material constants 414

15.9 The 'perfect' lens 417

15.10 Detectors for magnetic resonance imaging 422

Epilogue 424

Appendix I: Organic semiconductors 427

Appendix II: Nobel laureates 434

Appendix III: Physical constants 436

Appendix IV: Variational calculus. Derivation of Euler's equation 438

Appendix V: Thermoelectricity 440

Appendix VI: Principles of the operation of computer memories 444

Appendix VII: Medical imaging 463

Appendix VIII: Suggestions for further reading 471

Answers to exercises 474

Index 477

查看更多

馆藏单位

中科院文献情报中心