外文科技图书简介
当前位置:首页 > 检索结果 >文献详细内容

书名:Handbook of biomedical telemetry

责任者: Konstantina S. Nikita.

ISBN\ISSN:9781118388617 

出版时间:2014

出版社:John Wiley & Sons Inc.,

分类号:医药、卫生


前言

The word telemetry is derived from the Greek words "tele" = "remote", and "metron"= "measure", and means data measurements allowed to be made at a distance. In other words, data are measured in situ, and further transmitted remotely to a receiving station. Biomedical telemetry permits the measurement of physiological signals at a distance. Physiological signals are obtained by means of appropriate transducers, post-processed, and eventually transmitted to an exterior monitoring and/or control device. The exterior device can be placed on or at a close distance from the subject's body, but can also further communicate with a distant hospital or physicians' station with the help of communication technologies and infrastructure.A\The "Handbook of Biomedical Telemetry" aims to form a complete book in this emerging scientific field, addressing all arising scientific issues and technologies. It includes a comprehensive set of topics, sources and resources and contains generic information, detailed scientific analyses, as well as example applications. To accurately cover the broad range of topics arising within biomedical telemetry, the book comprises 23 chapters, divided into three parts.A\The First Part of the book addresses technologies for the design of biomedical telemetry devices, biomedical sensing, and powering techniques for biomedical telemetry applications.A\The Second Part of the book deals with Propagation and Communication Issues in Biomedical Telemetry, and covers numerical and experimental techniques for body area electromagnetics, inductive coupling, antennas and RF communication, intra-body communication, optical communication, biosensor communication technologies and standards, context-aware sensing and multi-sensor fusion, security and privacy issues, connection between biomedical telemetry and telemedicine, as well as safety issues and exposure assessment to high frequency biotelemetry fields.A\The Third Part of the book presents selected examples of wearable, implantable and ingestible devices, stimulators, integrated mobile healthcare systems, and advanced material-based sensing paradigms for monitoring and therapeutic intervention.A\The material in the book is written for persons at a number of levels. Much of it is introductory for an engineer, but serves to link engineering principles with living systems, such as the material related to sensng and propagation of physiological signals over time and space. Even though the book is expected to enable a diverse group of readers to become acquainted with biomedical telemetry, it also intends to provide highly specialized comprehensive knowledge in the field. As a result, it is mainly intended for persons who are familiar with conventional engineering and biomedical engineering principles. It can be addressed to a wide audience—from advanced undergraduate and postgraduate students pursuing education/degrees in bioengineering / biomedical / communications engineering to practicing engineers, engineering professors, researchers and industry specialists in the fields of communications and biomedical engineering sciences.A\Several chapters have been written by experts in the respective fields, and a great effort has been devoted to secure chapter-to-chapter cohesion and writing style uniformity. As a result, the book contains more perspectives, analyzes more data, incorporates knowledge and research from more disciplines, and uses a wider variety of methodologies.A\An important feature of the work is the breadth and depth of treatment given to the component parts of a biomedical telemetry system and their illustration through numerous application case studies. An overview of the commercially (off-shelf) available equipment related to particular described scenarios is also presented. Human phantoms, spectrum regulations, safety, standards and interoperability issues are presented and supported by relevant resource listings, while major technical challenges related to advanced materials, miniaturization and biocompatibility issues, are also included. KONSTANTINA S. NIKITA

查看更多

目录

PREFACE xxi

ACKNOWLEDGMENTS xxiii

CONTRIBUTORS xxv

1 Introduction to Biomedical Telemetry 1

      1.1 What is Biomedical Telemetry? 1

      1.2 Significance of Area, 3

      1.3 Typical Biomedical Telemetry System, 4

      1.4 Challenges in Biomedical Telemetry, 5

      1.4.1 Spectrum Regulations, 5

      1.4.2 Sensing Technologies, 7

      1.4.3 Advanced Materials, 8

      1.4.4 Data and Power Circuits, 9

      1.4.5 Biocompatibility Issues, 10

      1.4.6 Standardization and Interoperability, 11

      1.4.7 Privacy and Security, 12

      1.4.8 Biomedical Telemetry Toward Telemedicine, 12

      1.4.9 Patient Safety, 13

      1.5 Commercial Medical Telemetry Devices, 14

      1.5.1 Wearable Devices, 14

      1.5.2 Implantable Devices, 15

      1.5.3 Ingestible Devices, 18

      1.6 Overview of Book, 19

      References, 23

PART I BIOMEDICAL TELEMETRY DEVICES 27

2 Design Considerations of Biomedical Telemetry Devices 29

      2.1 Introduction, 29

      2.2 Energy Transfer Types, 30

      2.3 Architecture of Inductively Coupled Biomedical Telemetry Devices, 31

      2.3.1 Inductive Link Fundamentals, 32

      2.3.2 Coupling Compensation, 36

      2.3.3 Rectification and Voltage Regulation, 37

      2.3.4 Transmitter Power Amplifier, 38

      2.4 Data Transmission Methods, 39

      2.4.1 Downlink, 39

      2.4.2 Uplink, 42

      2.5 Safety Issues, 44

      2.5.1 Implant Heating, 45

      2.5.2 Transmission to Human Body, 46

      2.5.3 Transmission from Human Body, 46

      2.6 Conclusion, 51

      References, 51

3 Sensing Principles for Biomedical Telemetry 56

      3.1 Introduction, 56

      3.2 Biosensor Structure, 57

      3.2.1 Design Constraints, 57

      3.3 Electrochemical Biosensors, 59

      3.3.1 Amperometric Electrochemical Biosensors, 60

      3.3.2 Potentiometric Electrochemical Biosensors, 61

      3.3.3 Impedimetric Electrochemical Biosensors, 62

      3.4 Optical Biosensors, 63

      3.4.1 Integrated Optical Biosensors, 64

      3.4.2 Interferometric Architectures, 64

      3.4.3 Biosensors Based on Antiresonant Reflecting Optical Waveguides, 66

      3.4.4 Biosensors Based on Surface Plasmon Resonance, 66

      3.5 Thermal/Calorimetric Biosensors, 67

      3.6 Piezoelectric Biosensors, 69

      3.7 Other Types of Biosensors, 71

      3.7.1 Magnetic Biosensors, 71

      3.7.2 Pyroelectric Biosensors, 71

      3.7.3 Ion Channel Biosensors, 72

      3.8 Conclusions, 72

      References, 73

4 Sensing Technologies for Biomedical Telemetry 76

      4.1 Introduction, 76

      4.2 Noninvasive Sensors and Interfaces, 77

      4.2.1 Sensors Using Electrophysiological Signals, 77

      4.2.2 Photoplethysmogram Sensor, 79

      4.2.3 Pulse Oximeter, 81

      4.2.4 Wireless Pressure Monitor, 83

      4.2.5 Motion Sensors, 86

      4.2.6 Temperature Sensor, 88

      4.2.7 Wireless and Wearable Chemical Sensor, 88

      4.2.8 Capsule Sensor and Endoscopic Camera, 89

      4.3 Invasive and Implantable Sensors, 92

      4.3.1 Pressure Sensors, 93

      4.3.2 Chemical Sensor, 95

      4.3.3 Electroencephalography Sensor, 96

      4.3.4 Magnetoelastic Sensor, 97

      4.3.5 Surface Acoustic Wave Sensors, 97

      4.3.6 Energy- and Power-Harvesting Piezoelectric MEMS Device, 99

      4.3.7 Microfluidic Sensors, 99

      4.3.8 In-Stick Electrode Sensor, 100

      4.4 Conclusion, 101

      References, 101

5 Power Issues in Biomedical Telemetry 108

      5.1 Introduction and Powering Mechanisms, 108

      5.2 Motion-Powered Radio Frequency Identification (RFID) Wireless Sensors, 109

      5.3 Noninvasive Wireless Methods for Powering on Sensors, 112

      5.3.1 Inductive Coupling, 115

      5.3.2 Conformal Strongly Coupled Wireless Powering of Biomedical Devices, 118

      5.3.3 Far-Field Wireless Power Harvesting, 125

      5.4 Conclusion, 129

      References, 129

PART II PROPAGATION AND COMMUNICATION ISSUES FOR BIOMEDICAL TELEMETRY 131

6 Numerical and Experimental Techniques for Body Area Electromagnetics 133

      6.1 Introduction, 133

      6.2 Electrical Properties of Human Body Tissues, 135

      6.3 Numerical Modeling, 139

      6.3.1 Numerical Phantoms, 139

      6.3.2 Computational Methods, 145

      6.4 Physical Modeling, 154

      6.4.1 Physical Phantoms, 154

      6.4.2 Experimental Equipment and Measurements, 158

      6.5 Safety Issues, 164

      6.6 Conclusion, 167

      References, 168

7 Inductive Coupling 174

      7.1 Introduction, 174

      7.2 Induction Principles, 175

      7.2.1 Magnetic Fields, 175

      7.2.2 Inductance and Inductive Coupling, 176

      7.2.3 Mutually Coupled Coils, 176

      7.2.4 Equivalent Network Models, 177

      7.3 Wireless Power Transmission, 178

      7.3.1 Resonant versus Nonresonant Inductive Links, 178

      7.3.2 Power Transfer Efficiency, 180

      7.3.3 Multicoil Inductive Coupling, 182

      7.3.4 Power Amplifiers, 185

      7.4 Inductive Coupling for Biomedical Telemetry, 186

      7.4.1 Design Challenges and Possible Solutions, 186

      7.4.2 Optimization of Coil Geometries, 189

      7.4.3 Power Absorption in Tissue, 191

      7.4.4 Safety Issues, 192

      7.5 Inductive Data Transmission, 192

      7.5.1 Forward Telemetry, 192

      7.5.2 Backward Telemetry, 196

      7.5.3 Single Carrier versus Multicarrier, 198

      7.5.4 Pulse-Based Data Transmission, 200

      7.6 Broader Applications, 201

      7.7 Future Research Directions, 202

      7.8 Conclusion, 202

      References, 203

8 Antennas and RF Communication 209

      8.1 Introduction, 209

      8.2 Background Information, 222

      8.3 On-Body Antennas, 212

      8.3.1 Antenna Design, 212

      8.3.2 Channel Modeling, 219

      8.4 Implantable Antennas, 223

      8.4.1 Antenna Design, 223

      8.4.2 Channel Modeling, 230

      8.5 Ingestible Antennas, 235

      8.5.1 Antenna Design, 235

      8.5.2 Channel Modeling, 241

      8.6 Conclusion and Future Research Directions, 245

      References, 246

9 Intrabody Communication 252

      9.1 Introduction, 252

      9.2 Intrabody Communication Transmission Methods, 256

      9.2.1 Galvanic Coupling, 256

      9.2.2 Capacitive Coupling, 258

      9.3 Dielectric Properties of Human Body, 259

      9.3.1 Electrophysiological Properties of Skin, 263

      9.4 Experimental Characterization of IBC Channel, 265

      9.4.1 Experimental Setup for Galvanic Coupling, 266

      9.4.2 Experimental Setup for Capacitive Coupling, 268

      9.4.3 Experimental Results for Galvanic Coupling, 268

      9.4.4 Experimental Results for Capacitive Coupling, 271

      9.5 Introduction to IBC Models, 273

      9.5.1 Circuit-Level Approaches, 273

      9.5.2 Electromagnetic Models, 279

      9.5.3 Computational Models, 280

      9.5.4 Theoretical Models of EM Propagation, 281

      9.6 IBC Propagation Channel, 282

      9.6.1 Path Loss, 282

      9.6.2 Dispersion, 286

      9.6.3 Modulation Schemes, 289

      9.7 Conclusion, 292

      Acknowledgments, 294

      References, 294

10 Optical Biotelemetry 301

      10.1 Introduction, 301

      10.2 Optical Technology for Optical Biotelemetry, 303

      10.2.1 Selection of Wavelength, 303

      10.2.2 Light Source, 304

      10.2.3 Light-Detecting Elements, 305

      10.2.4 Measures for Optical Noises, 305

      10.3 Communication Technology for Optical Telemetry, 306

      10.3.1 Analog/Digital Transmission, 306

      10.3.2 Modulation Method, 307

      10.3.3 Toward Intelligent Transmission, 307

      10.3.4 Multiplexing Method, 308

      10.4 Propagation of Optical Signal, 309

      10.4.1 Optical Characteristics of Body Surface Tissue, 309

      10.4.2 Distribution of Indirect Light in a Room, 310

      10.4.3 Optical Signal Propagation in Open Space, 313

      10.5 Multiplexing in Optical Telemetry, 313

      10.5.1 Pulse-Burst Method, 314

      10.5.2 Spread-Spectrum Method, 314

      10.6 Applications of Optical Telemetry, 316

      10.6.1 Transcutaneous Biotelemetry, 316

      10.6.2 Optical Body Area Network, 317

      10.6.3 Noncontact Measurement of Body Surface Displacement, 319

      10.6.4 Ambulatory Telemetry, 321

      10.6.5 Multichannel Biotelemetry, 322

      10.6.6 Data Transmission between Medical Equipment, 326

      10.7 Conclusion, 327

      References, 328

11 Biosensor Communication Technology and Standards 330

      11.1 Introduction, 330

      11.2 Biosensor Application Scenarios, 332

      11.2.1 Reference Use Case, 332

      11.2.2 System Overview, 334

      11.3 Biosensor Communication Technologies, 335

      11.3.1 Frequency Spectrum Regulations, 335

      11.3.2 Wireless Technologies and Standards, 337

      11.3.3 Health Data Interoperability Standards, 348

      11.4 Conclusion, 364

      References, 365

12 Context-Aware Sensing and Multisensor Fusion 368

      12.1 Introduction, 368

      12.2 Context-Aware Sensing, 368

      12.2.1 Classification of Context-Sensitive Systems, 370

      12.2.2 Sensor Technologies, 371

      12.2.3 Preprocessing, 371

      12.3 Multisensor Fusion, 373

      12.3.1 Fusion Architecture and Different Levels of Sensor Data Fusion, 375

      12.3.2 Decision-Level Fusion, 378

      12.4 Example Application: Stress Measurement, 378

      12.5 Conclusion and Future Research Directions, 379

      References, 379

13 Security and Privacy in Biomedical Telemetry: Mobile Health Platform for Secure Information Exchange 382

      13.1 Introduction, 382

      13.2 Digital Security, 383

      13.2.1 Host Computer Security, 384

      13.2.2 Information Security, 385

      13.2.3 Network Security, 387

      13.2.4 Biometrics, 388

      13.3 Wearable Health Monitoring Systems (WHMS) Platform, 390

      13.3.1 System Setup, 390

      13.3.2 Voice Interaction, 392

      13.3.3 Remote Monitoring Application, 393

      13.4 Processing of Physiological Data, 394

      13.4.1 DWT and Wavelet Packets, 395

      13.4.2 Detecting Unusable ECG Data Portions, 396

      13.4.3 Approach on ECG Denoising, 399

      13.5 Secure Information Exchange, 400

      13.5.1 CEH Scheme, 401

      13.5.2 Authentication-Authorization Scheme, 403

      13.6 Conclusion and Future Research Directions, 414

      Acknowledgment, 415

      References, 415

14 Connection Between Biomedical Telemetry and Telemedicine 419

      14.1 Introduction, 419

      14.2 Biomedical Instrumentation, 420

      14.3 Biomedical Telemetry and Telemedicine: Related Work, 421

      14.4 Theory and Applications of Biomedical Telemetry, 423

      14.5 Integration of Biomedical Telemetry with Telemedicine, 423

      14.6 Wireless Communication Protocols and Standards, 425

      14.7 Cross-Layer Design of Wireless Biomedical Telemetry and Telemedicine Health Networks, 425

      14.7.1 Electromagnetic Spectrum, 425

      14.7.2 Interference Management for Biomedical Telemetry Communication Networks, 427

      14.8 Telecommunication Networks in Health Care for Biomedical Telemetry, 428

      14.8.1 Body Area and Personal Area Networks, 429

      14.8.2 Medical Device Connectivity, 430

      14.8.3 Biomedical Telemetry Monitoring Devices for Telemedicine, 433

      14.9 Future Research Directions and Challenges, 437

      14.9.1 Biotelemetry Systems for High-Rate Biomedical Signals, 437

      14.9.2 EEG Portable Monitoring and Electrode Design, 438

      14.9.3 Bioinspired Approaches, 440

      14.10 Conclusion, 440

      References, 442

15 Safety Issues in Biomedical Telemetry 445

      15.1 Introduction, 445

      15.2 Operational Safety, 446

      15.2.1 Electrical Hazards, 446

      15.2.2 Heat-Related Risks, 448

      15.2.3 Failure/Malfunction of Devices, 449

      15.3 Product and Device Hazards, 450

      15.3.1 Adverse Tissue Reaction and Immune System Rejection Risks, 450

      15.3.2 Migration, 451

      15.3.3 Security Risks, 451

      15.3.4 Development of Cancer, 452

      15.3.5 Magnetic Resonance Imaging Incompatibility, 453

      15.4 Patient and Clinical Safety, 454

      15.4.1 Patient Safety, 454

      15.4.2 Clinical Safety, 456

      15.4.3 Establishing Clinical Safety, 458

      15.5 Human Factor and Use Issues, 458

      15.5.1 Use-Related Hazards, 459

      15.6 Electromagnetic Compatibility and Interference Issues, 461

      15.7 Applicable Guidelines, 464

      15.7.1 Development of IEEE C95.1-1991 Standard, 465

      15.7.2 International Commission on Non-Ionizing Radiation Protection and Its Role, 466

      15.7.3 Issues on Developing Safety Standards, 467

      15.7.4 Evolution and Comparison of Guidelines, 468

      15.8 Occupational Safety, 471

      15.9 Future Research Directions, 472

      15.10 Conclusion, 473

      References, 474

PART III EXAMPLE APPLICATIONS OF BIOMEDICAL TELEMETRY 479

16 Clinical Applications of Body Sensor Networks 481

      16.1 Introduction, 481

      16.2 Healthcare Paradigm Shift for Pervasive Sensing, 483

      16.3 Usage Scenarios, 484

      16.3.1 In the Community, 486

      16.3.2 Diagnostics, 487

      16.3.3 Perioperative, 490

      16.3.4 Extreme Environments, 492

      16.4 Opportunities and Future Challenges, 494

      16.4.1 User Preferences, 494

      16.4.2 Clinical Translation, 495

      16.4.3 Practical Considerations, 496

      16.4.4 Personalization, 500

      16.4.5 Future, 500

      16.5 Conclusion, 501

      Acknowledgment, 502

      References, 502

17 Wearable Health Care System Paradigm 505

      17.1 Introduction, 505

      17.2 Wireless Wearable Technology in Health Care, 506

      17.3 Methods and Design Approach for Wireless Wearable Systems, 509

      17.3.1 Design Goal and Considerations, 509

      17.3.2 Wireless Technologies Available for Wearable Systems, 510

      17.4 Example Wireless Body Area Network (WBAN) Applications in Health Care, 516

      17.4.1 Wearable Artificial Pancreas, 516

      17.4.2 Functional Electrical Stimulation, 518

      17.4.3 Multiparameter Monitoring, 519

      17.5 Conclusion, 521

      References, 521

18 Epidermal Sensor Paradigm: Inner Layer Tissue Monitoring 525

      18.1 Introduction, 525

      18.2 Review of Electromagnetic Properties of Human Body, 526

      18.2.1 Numerical Expression of Dielectric Properties for Human Tissues, 526

      18.2.2 Human Tissue Dielectric Properties, 527

      18.3 Propagation Modes for Body-Centric Wireless Communications, 531

      18.3.1 Space Wave Analysis for Off-Body Communication, 535

      18.4 Human Torso Model for Body-Centric Wireless Communication, 537

      18.4.1 Human Torso Model for In-Body Communication, 538

      18.4.2 Human Torso Model for On-Body Communication, 539

      18.4.3 Human Torso Model for Off-Body Communication, 541

      18.5 Two-Layer Model for Internal Organ Monitoring, 542

      18.6 Epidermal RF Sensor for Inner Layer Tissue Monitoring, 542

      18.7 Extraction of Dielectric Constant, 544

      18.8 Conclusion, 546

      References, 547

19 Implantable Health Care System Paradigm 549

      19.1 Introduction, 549

      19.2 Multilayered Model Simulating Human Body, 550

      19.3 Cardiac Pacemaker Embedded in Multilayered Models, 554

      19.3.1 Modeling and Analytical Method, 554

      19.3.2 Link Budget, 557

      19.3.3 Antenna Characteristics, 557

      19.3.4 Verification by Human Body Model, 558

      19.4 Implantable Health Care System Paradigm, 562

      19.4.1 Link Budget for Wireless Communication, 563

      19.4.2 Calculation of Helical Dipole Antenna, 563

      19.4.3 Experiment of Helical Dipole Antenna, 564

      19.4.4 Analysis Using High-Resolution Model, 566

      19.5 Conclusion and Future Research Directions, 568

      References, 570

20 Ingestible Health Care System Paradigm for Wireless Capsule Endoscopy 572

      20.1 Introduction, 572

      20.1.1 Wireless Capsule Endoscopy and Other Technologies, 573

      20.1.2 Need for Computer-Aided Diagnostic System, 573

      20.1.3 Results from Recent WCE Methods, 575

      20.2 WCE and Endoscopic Imaging, 576

      20.2.1 Methods Classification, 576

      20.3 Diagnostic Methods and Challenges, 585

      20.4 Future Directions: Design New Generation of WCE, 586

      20.4.1 Design of New Robotic WCE, 587

      20.4.2 Alternative Design, 590

      20.5 Conclusion and WCE Global Health Care, 591

      References, 591

21 Stimulator Paradigm: Artificial Retina 593

      21.1 Introduction, 593

      21.2 Telemetry for Artificial Retina, 594

      21.3 Intraocular Telemetry Antennas, 595

      21.3.1 Fractal Antennas, 598

      21.3.2 Meander Antennas, 599

      21.3.3 Prototypes and Experimental Results, 603

      21.3.4 Biocompatibility and Safety Considerations, 608

      21.4 Multicoil Telemetry, 611

      21.4.1 Power Transfer Efficiency, 613

      21.4.2 Voltage Gain, 614

      21.4.3 Frequency Bandwidth, 616

      21.5 Future Research Directions: Flexible and Liquid Antennas, 618

      21.6 Conclusion, 620

      References, 620

22 mHealth-Integrated System Paradigm: Diabetes Management 623

      22.1 Clinical Treatment, 623

      22.1.1 Blood Glycemic Variability, 624

      22.2 Diabetes Treatment through Telemetry, 624

      22.3 Problems Related to Current Treatments, 625

      22.4 Assessment: State of the Art, 625

      22.5 Technological Solution, 626

      22.5.1 Sensors for Medicine and Science, 626

      22.5.2 Philips IntelliVue MX40 Patient Monitoring, 626

      22.5.3 GlucoBand, 627

      22.6 METABO System, 627

      22.6.1 METABO Challenges, 627

      22.6.2 METABO Medical and Technological Vision, 628

      22.6.3 System Overview, 628

      22.7 Evaluation Methodology: Data Collection and System Testing, 629

      22.8 Results, 631

      22.9 Conclusion, 631 Acknowledgments, 632

      References, 632

23 Advanced Material-Based Sensing Structures 633

      23.1 Introduction, 633

      23.2 Human-Body-Wearable Antennas, 634

      23.2.1 Challenges of Wearable Wireless Device, 634

      23.2.2 Role of Antenna in Wireless Body Area Networks (WBANs), 636

      23.2.3 Inkjet Printing on Paper Substrate, 637

      23.2.4 Antenna on Electromagnetic Band Gap Structure for Wearable Applications, 638

      23.2.5 Liquid Ionic Antenna for Biosignal Monitoring Applications, 650

      23.2.6 Inkjet-Printed Substrate-Integrated Waveguide, 655

      23.3 Carbon-Nanotube-Based Ammonia Detection for Medical Diagnosis, 656

      23.3.1 Introduction, 656

      23.3.2 Functionalized CNTs, 659

      23.3.3 Material Properties and Characterization, 660

      23.3.4 Sensor Design, 664

      23.3.5 Controlled Sensor Measurement, 667

      23.4 Graphene-Based Ammonia Detection for Medical Diagnosis, 670

      23.4.1 Introduction, 670

      23.4.2 Principle of Operation, 671

      23.4.3 Design Example, 671

      23.4.4 Inkjet Printing of Graphene Sensor Prototype, 672

      23.4.5 Optimization of RGO Thin Film, 676

      23.4.6 Gas Sensor Experimentation, 676

      23.5 Integrated Wireless Modules, 679

      23.5.1 Wireless EKG System Utilizing Low-Power ZigBee Standard, 679

      23.5.2 Smart Wireless Integrated Module, 681

      23.5.3 Wireless Transmission of CNT-based Sensed Information, 683

      23.6 Conclusion, 685

      References, 686

INDEX 691

查看PDF
查看更多

馆藏单位

中国医科院医学信息研究所