外文科技图书简介
当前位置:首页 > 检索结果 >文献详细内容

书名:A course in mathematical analysis. Volume II, Metric and topological spaces, functions of a vector variable

责任者:D.J.H. Garling  |  Emeritus Reader in Mathematical Analysis  |  University of Cambridge  |  and Fellow of St. John s College  |  Cambridge.

ISBN\ISSN:9781107032033,9781107675322 

出版时间:2014

出版社:Cambridge University Press

分类号:数学


前言

The three volumes of A Course in Mathematical Analysis provide a full and detailed account of all those elements of real and complex analysis that an undergraduate mathematics student can expect to encounter in their first two or three years of study. Containing hundreds of exercises, examples and applications, these books will become an invaluable resource for both students and teachers. Volume 1 focuses on the analysis of real-valued functions of a real variable. This second volume goes on to consider metric and topological spaces. Topics such as completeness, compactness and connectedness are developed, with emphasis on their applications to analysis. This leads to the theory of functions of several variables. Differential manifolds in Euclidean space are introduced in a final chapter, which includes an account of Lagrange multipliers and a detailed proof of the divergence theorem. Volume 3 covers complex analysis and the theory of measure and integration.

查看更多

目录

Introduction page ix

Part Three Metric and topological spaces 301

11 Metric spaces and normed spaces 303

      11.1 Metric spaces: examples 303

      11.2 Normed spaces 309

      11.3 Inner-product spaces 312

      11.4 Euclidean and unitary spaces 317

      11.5 Isometries 319

      11.6 *The Mazur-Ulam theorem* 323

      11.7 The orthogonal group Od 327

12 Convergence, continuity and topology 330

      12.1 Convergence of sequences in a metric space 330

      12.2 Convergence and continuity of mappings 337

      12.3 The topology of a metric space 342

      12.4 Topological properties of metric spaces 349

13 Topological spaces 353

      13.1 Topological spaces 353

      13.2 The product topology 361

      13.3 Product metrics 366

      13.4 Separation properties 370

      13.5 Countability properties 375

      13.6 *Examples and counterexamples* 379

14 Completeness 386

      14.1 Completeness 386

      14.2 Banach spaces 395

      14.3 Linear operators 400

      14.4 *Tietze's extension theorem* 406

      14.5 The completion of metric and normed spaces 408

      14.6 The contraction mapping theorem 412

      14.7 *Baire's category theorem* 420

15 Compactness 431

      15.1 Compact topological spaces 431

      15.2 Sequentially compact topological spaces 435

      15.3 Totally bounded metric spaces 439

      15.4 Compact metric spaces 441

      15.5 Compact subsets of C(K) 445

      15.6 *The Hausdorff metric* 448

      15.7 Locally compact topological spaces 452

      15.8 Local uniform convergence 457

      15.9 Finite-dimensional normed spaces 460

16 Connectedness 464

      16.1 Connectedness 464

      16.2 Paths and tracks 470

      16.3 Path-connectedness 473

      16.4 *Hilbert's path* 475

      16.5 *More space-filling paths* 478

      16.6 Rectifiable paths 480

Part Four Functions of a vector variable 483

17 Differentiating functions of a vector variable 485

      17.1 Differentiating functions of a vector variable 485

      17.2 The mean-value inequality 491

      17.3 Partial and directional derivatives 496

      17.4 The inverse mapping theorem 500

      17.5 The implicit function theorem 502

      17.6 Higher derivatives 504

18 Integrating functions of several variables 513

      18.1 Elementary vector-valued integrals 513

      18.2 Integrating functions of several variables 515

      18.3 Integrating vector-valued functions 517

      18.4 Repeated integration 525

      18.5 Jordan content 530

      18.6 Linear change of variables 534

      18.7 Integrating functions on Euclidean space 536

      18.8 Change of variables 537

      18.9 Differentiation under the integral sign 543

19 Differential manifolds in Euclidean space 545

      19.1 Differential manifolds in Euclidean space 545

      19.2 Tangent vectors 548

      19.3 One-dimensional differential manifolds 552

      19.4 Lagrange multipliers 555

      19.5 Smooth partitions of unity 565

      19.6 Integration over hypersurfaces 568

      19.7 The divergence theorem 572

      19.8 Harmonic functions 582

      19.9 Curl 587

Appendix B Linear algebra 591

      B.1 Finite-dimensional vector spaces 591

      B.2 Linear mappings and matrices 594

      B.3 Determinants 597

      B.4 Cramer's rule 599

      B.5 The trace 600

Appendix C Exterior algebras and the cross product 601

      C.1 Exterior algebras 601

      C.2 The cross product 604

Appendix D Tychonoff's theorem 607

Index 612

Contents for Volume I 618

Contents for Volume III 621

查看更多

馆藏单位

中科院文献情报中心