外文科技图书简介
当前位置:首页 > 检索结果 >文献详细内容

书名:Practical linear algebra

责任者:Gerald Farin  |  Dianne Hansford ; 李红玲 注释.

ISBN\ISSN:9787111473343 

出版时间:2014

出版社:机械工业出版社

分类号:数学

版次:[Reprinted ed.].


前言

本书区别于以往线性代数的书籍,内容新颖,编排独特,作者以几何视角讲述线性代数,通过二维平面和三维空间中的例子解释线性代数中的各种概念和性质。本书强调直观性以及知识点的背景,结合计算机中各种图形的变换来理解线性变换,注重可读性的同时突出数学的基本思想,将直观图形与数学证明进行了巧妙的结合。作者在书籍侧边空白处手绘200余幅示意图给出了相关概念的解释,更好的帮助读者理解。本书可供非数学类专业的学生及数学爱好者使用,亦可作为数学专业学生和教师的参考用书。

查看更多

目录

Preface

Chapter 1 Descartes' Discovery 1

1.1 Local and Global Coordinates: 2D 2

1.2 Going from Global to Local 6

1.3 Local and Global Coordinates: 3D 8

1.4 Stepping Outside the Box 9

1.5 Creating Coordinates 10

1.6 Exercises 12

Chapter 2 Here and There: Points and Vectors in 2D 13

2.1 Points and Vectors 14

2.2 What's the Difference 16

2.3 Vector Fields 17

2.4 Length of a Vector 18

2.5 Combining Points 21

2.6 Independence 24

2.7 Dot Product 24

2.8 Orthogonal Projections 28

2.9 Inequalities 29

2.10 Exercises 30

Chapter 3 Lining Up: 2D Lines 33

3.1 Defining a Line 34

3.2 Parametric Equation of a Line 35

3.3 Implicit Equation of a Line 37

3.4 Explicit Equation of a Line 40

3.5 Converting Between Parametric and Implicit Equations 41

3.6 Distance of a Point to a Line 43

3.7 The Foot of a Point 47

3.8 A Meeting Place: Computing Intersections 48

3.9 Exercises 54

Chapter 4 Changing Shapes: Linear Maps in 2D 57

4.1 Skew Target Boxes 58

4.2 The Matrix Form 59

4.3 More about Matrices 61

4.4 Scalings 63

4.5 Reflections 65

4.6 Rotations 68

4.7 Shears 69

4.8 Projections 71

4.9 The Kernel of a Projection 73

4.10 Areas and Linear Maps: Determinants 74

4.11 Composing Linear Maps 77

4.12 More on Matrix Multiplication 81

4.13 Working with Matrices 83

4.14 Exercises 84

Chapter 5 2×2 Linear Systems 87

5.1 Skew Target Boxes Revisited 88

5.2 The Matrix Form 89

5.3 A Direct Approach: Cramer's Rule 90

5.4 Gauss Elimination 91

5.5 Undoing Maps: Inverse Matrices 93

5.6 Unsolvable Systems 99

5.7 Underdetermined Systems 100

5.8 Homogeneous Systems 100

5.9 Numerical Strategies: Pivoting 102

5.10 Defining a Map 103

5.11 Exercises 104

Chapter 6 Moving Things Around: Affine Maps in 2D 107

6.1 Coordinate Transformations 108

6.2 Affine and Linear Maps 110

6.3 Translations 111

6.4 More General Affine Maps 112

6.5 Mapping Triangles to Triangles 114

6.6 Composing Affine Maps 116

6.7 Exercises 120

Chapter 7 Eigen Things 123

7.1 Fixed Directions 124

7.2 Eigenvalues 125

7.3 Eigenvectors 127

7.4 Special Cases 129

7.5 The Geometry of Symmetric Matrices 132

7.6 Repeating Maps 135

7.7 The Condition of a Map 137

7.8 Exercises 138

Chapter 8 Breaking It Up: Triangles 141

8.1 Barycentric Coordinates 142

8.2 Affine Invariance 144

8.3 Some Special Points 145

8.4 2D Triangulations 148

8.5 A Data Structure 149

8.6 Point Location 150

8.7 3D Triangulations 151

8.8 Exercises 153

Chapter 9 Conics 155

9.1 The General Conic 156

9.2 Analyzing Conics 160

9.3 The Position of a Conic 162

9.4 Exercises 163

Chapter 10 3D Geometry 165

10.1 From 2D to 3D 166

10.2 Cross Product 168

10.3 Lines 172

10.4 Planes 173

10.5 Application: Lighting and Shading 177

10.6 Scalar Triple Product 180

10.7 Linear Spaces 181

10.8 Exercises 183

Chapter 11 Interactions in 3D 185

11.1 Distance Between a Point and a Plane 186

11.2 Distance Between Two Lines 187

11.3 Lines and Planes: Intersections 189

11.4 Intersecting a Triangle and a Line 191

11.5 Lines and Planes: Reflections 191

11.6 Intersecting Three Planes 193

11.7 Intersecting Two Planes 194

11.8 Creating Orthonormal Coordinate Systems 195

11.9 Exercises 197

Chapter 12 Linear Maps in 3D 199

12.1 Matrices and Linear Maps 200

12.2 Scalings 202

12.3 Reflections 204

12.4 Shears 204

12.5 Projections 207

12.6 Rotations 209

12.7 Volumes and Linear Maps: Determinants 213

12.8 Combining Linear Maps 216

12.9 More on Matrices 218

12.10 Inverse Matrices 219

12.11 Exercises 221

Chapter 13 Affine Maps in 3D 223

13.1 Affine Maps 224

13.2 Translations 225

13.3 Mapping Tetrahedra 225

13.4 Projections 229

13.5 Homogeneous Coordinates and Perspective Maps 232

13.6 Exercises 238

Chapter 14 General Linear Systems 241

14.1 The Problem 242

14.2 The Solution via Gauss Elimination 244

14.3 Determinants 250

14.4 Overdetermined Systems 253

14.5 Inverse Matrices 256

14.6 LU Decomposition 258

14.7 Exercises 262

Chapter 15 General Linear Spaces 265

15.1 Basic Properties 266

15.2 Linear Maps 268

15.3 Inner Products 271

15.4 Gram-Schmidt Orthonormalization 271

15.5 Higher Dimensional Eigen Things 272

15.6 A Gallery of Spaces 274

15.7 Exercises 276

Chapter 16 Numerical Methods 279

16.1 Another Linear System Solver: The Householder Method 280

16.2 Vector Norms and Sequences 285

16.3 Iterative System Solvers: Gauss-Jacobi and Gauss-Seidel 287

16.4 Finding Eigenvalues: the Power Method 290

16.5 Exercises 294

Chapter 17 Putting Lines Together: Polylines and Polygons 297

17.1 Polylines 298

17.2 Polygons 299

17.3 Convexity 300

17.4 Types of Polygons 301

17.5 Unusual Polygons 302

17.6 Turning Angles and Winding Numbers 304

17.7 Area 305

17.8 Planarity Test 309

17.9 Inside or Outside 310

17.10 Exercises 313

Chapter 18 Curves 315

18.1 Application: Parametric Curves 316

18.2 Properties of Bézier Curves 321

18.3 The Matrix Form 323

18.4 Derivatives 324

18.5 Composite Curves 326

18.6 The Geometry of Planar Curves 327

18.7 Moving along a Curve 329

18.8 Exercises 331

Appendix A PostScript Tutorial 333

A.1 A Warm-Up Example 333

A.2 Overview 336

A.3 Affine Maps 338

A.4 Variables 339

A.5 Loops 340

A.6 CTM 341

Appendix B Selected Problem Solutions 343

Glossary 367

Bibliography 371

Index 373

查看更多

馆藏单位

中科院文献情报中心