外文科技图书简介
当前位置:首页 > 检索结果 >文献详细内容

书名:Fundamental planetary science

责任者:Jack J. Lissauer and Imke de Pater.  |  De Pater, Imke,

ISBN\ISSN:9780521853309,9780521618557 

出版时间:2013

出版社:Cambridge University Press

分类号:天文学、地球科学


前言

A quantitative introduction to the Solar System and planetary systems science for advanced undergraduate students, this engaging new textbook explains the wide variety of physical, chemical, and geological processes that govern the motions and properties of planets. The authors provide an overview of our current knowledge and discuss some of the unanswered questions at the forefront of research in planetary science and astrobiology today. They combine knowledge of the Solar System and the properties of extrasolar planets with astrophysical observations of ongoing star and planet formation, offering a comprehensive model for understanding the origin of planetary systems. The book concludes with an introduction to the fundamental properties of living organisms and the relationship that life has to its host planet. With more than 200 exercises to help students learn how to apply the concepts covered, this textbook is ideal for a one-semester or two-quarter course for undergraduate students.

查看更多

目录

Tables page xi

Preface xiii

Color plates follow page xvi

1 Introduction 1

1.1 A Brief History of the Planetary Sciences 2

1.2 Inventory of the Solar System 3

      1.2.1 Giant Planets 4

      1.2.2 Terrestrial Planets 5

      1.2.3 Minor Planets and Comets 7

      1.2.4 Satellite and Ring Systems 8

      1.2.5 Tabulations 8

      1.2.6 Heliosphere 9

1.3 What Is a Planet? 10

1.4 Planetary Properties 11

      1.4.1 Orbit 11

      1.4.2 Mass 12

      1.4.3 Size 13

      1.4.4 Rotation 14

      1.4.5 Shape 15

      1.4.6 Temperature 16

      1.4.7 Magnetic Field 16

      1.4.8 Surface Composition 17

      1.4.9 Surface Structure 17

      1.4.10 Atmosphere 17

      1.4.11 Interior 18

1.5 Formation of the Solar System 19

Key Concepts 20

Further Reading 20

Problems 21

2 Dynamics 24

2.1 The Two-Body Problem 25

      2.1.1 Kepler's Laws of Planetary Motion 26

      2.1.2 Newton's Laws of Motion and Gravity 27

      2.1.3 Reduction of the Two-Body Problem to the One-Body Problem 27

      2.1.4* Generalization of Kepler's Laws 27

      2.1.5 Orbital Elements 29

      2.1.6 Bound and Unbound Orbits 30

2.2 The Three-Body Problem 31

      2.2.1 Jacobi's Constant and Lagrangian Points 32

      2.2.2 Horseshoe and Tadpole Orbits 34

      2.2.3 Hill Sphere 34

2.3 Perturbations and Resonances 36

      2.3.1 Resonant Forcing 36

      2.3.2 Mean Motion Resonances 36

      2.3.3 Secular Resonances 37

      2.3.4 Resonances in the Asteroid Belt 38

      2.3.5 Regular and Chaotic Motion 38

2.4 Stability of the Solar System 40

      2.4.1 Orbits of the Eight Planets 41

      2.4.2 Survival Lifetimes of Small Bodies 43

2.5* Dynamics of Spherical Bodies 43

      2.5.1 Moment of Inertia 44

      2.5.2 Gravitational Interactions 45

2.6 Orbits about an Oblate Planet 46

      2.6.1* Gravity Field 46

      2.6.2 Precession of Particle Orbits 47

      2.6.3 Torques on an Oblate Planet 47

2.7 Tides 48

      2.7.1 The Tidal Force and Tidal Bulges 50

      2.7.2 Tidal Torque 51

      2.7.3 Tidal Heating 53

2.8 Dissipative Forces and the Orbits of Small Bodies 54

      2.8.1 Radiation Pressure (Micrometer Grains) 54

      2.8.2 Poynting-Robertson Drag (Small Macroscopic Particles) 55

      2.8.3 Yarkovsky Effect (1–10 4 -Meter Objects) 56

      2.8.4 Corpuscular Drag (Submicrometer Dust) 56

      2.8.5 Gas Drag 57

2.9 Orbits about a Mass-Losing Star 58

Key Concepts 58

Further Reading 59

Problems 60

3 Physics and Astrophysics 64

3.1 Thermodynamics 65

      3.1.1 Laws of Thermodynamics 65

      3.1.2 Enthalpy 66

      3.1.3 Entropy 67

      3.1.4 Gibbs Free Energy 67

      3.1.5 Material Properties: Phase Changes 68

3.2 Barometric Law and Hydrostatic Equilibrium 68

3.3 Stellar Properties and Lifetimes 71

      3.3.1 Virial Theorem 71

      3.3.2 Luminosity 71

      3.3.3 Size 73

      3.3.4 Sizes and Densities of Massive Planets 74

3.4 Nucleosynthesis 76

      3.4.1 Primordial Nucleosynthesis 77

      3.4.2 Stellar Nucleosynthesis 79

      3.4.3 Radioactive Decay 82

      Key Concepts 82

      Further Reading 83

      Problems 83

4 Solar Heating and Energy Transport 85

4.1 Energy Balance and Temperature 86

      4.1.1 Thermal (Blackbody) Radiation 87

      4.1.2 Albedo 89

      4.1.3 Temperature 90

4.2 Energy Transport 91

4.3 Conduction 92

4.4 Convection 93

      4.4.1 Adiabatic Gradient 93

4.5 Radiation 94

      4.5.1 Photons and Energy Levels in Atoms 95

      4.5.2 Spectroscopy 97

      4.5.3 Radiative Energy Transport 100

      4.5.4 Radiative Equilibrium 102

4.6 Greenhouse Effect 102

      4.6.1 Quantitative Results 103

      4.6.2* Derivations 104

      Key Concepts 105

      Further Reading 106

      Problems 106

5 Planetary Atmospheres 109

5.1 Thermal Structure 110

      5.1.1 Sources and Transport of Energy 113

      5.1.2 Observed Thermal Profiles 114

5.2 Atmospheric Composition 115

5.3 Clouds 118

5.4 Meteorology 119

      5.4.1 Coriolis Effect 120

      5.4.2 Winds Forced by Solar Heating 121

5.5 Photochemistry 123

      5.5.1 Photolysis and Recombination 123

      5.5.2 Photoionization: Ionospheres 125

5.6 Molecular and Eddy Diffusion 126

      5.6.1 Eddy Diffusion 126

      5.6.2 Molecular Diffusion 126

5.7 Atmospheric Escape 127

      5.7.1 Thermal (Jeans) Escape 127

      5.7.2 Nonthermal Escape 128

      5.7.3 Hydrodynamic Escape and Impact Erosion 128

5.8 History of Secondary Atmospheres 129

      5.8.1 Formation 129

      5.8.2 Climate Evolution 130

      5.8.3 Summary of Secondary

      Atmospheres 136

      Key Concepts 136

      Further Reading 137

      Problems 137

6 Surfaces and Interiors 141

6.1 Mineralogy and Petrology 142

      6.1.1 Minerals 142

      6.1.2 Rocks 143

      6.1.3 Material under High Temperature and Pressure 147

      6.1.4 Cooling of a Magma 149

6.2 Planetary Interiors 150

      6.2.1 Interior Structure of the Earth 150

      6.2.2 Shape and Gravity Field 151

      6.2.3 Internal Heat: Sources, Losses and Transport 153

6.3 Surface Morphology 155

      6.3.1 Tectonics 155

      6.3.2 Volcanism 159

      6.3.3 Atmospheric Effects on Landscape 163

6.4 Impact Cratering 167

      6.4.1 Crater Morphology 168

      6.4.2 Crater Formation 170

      6.4.3 Impact Modification by Atmospheres 177

      6.4.4 Spatial Density of Craters 178

      6.4.5 Impacts on Earth 181

      Key Concepts 182

      Further Reading 183

      Problems 184

7 Sun, Solar Wind and Magnetic Fields 187

7.1 The Sun 188

7.2 The Interplanetary Medium 191

      7.2.1 Solar Wind 191

      7.2.2 The Parker Model 193

      7.2.3 Space Weather 195

      7.2.4 Solar Wind–Planet Interactions 196

7.3 Planetary Magnetospheres 198

      7.3.1 Earth's Magnetosphere 198

      7.3.2 Aurora 199

      7.3.3 Magnetospheric Plasmas 200

      7.3.4 Radio Emissions 203

7.4 Generation of Magnetic Fields 203

      7.4.1 Variability of Earth's Magnetic Field 203

      7.4.2 Magnetic Dynamo Theory 204

      Key Concepts 204

      Further Reading 205

      Problems 205

8 Giant Planets 206

8.1 Jupiter 207

      8.1.1 Atmosphere 207

      8.1.2 Impacts on Jupiter 211

      8.1.3 Interior Structure 214

      8.1.4 Magnetic Field 214

8.2 Saturn 216

      8.2.1 Atmosphere 216

      8.2.2 Interior Structure 218

      8.2.3 Magnetic Field 218

8.3 Uranus and Neptune 219

      8.3.1 Atmospheres 219

      8.3.2 Interiors 220

      8.3.3 Magnetic Fields 222

      Key Concepts 223

      Further Reading 224

      Problems 224

9 Terrestrial Planets and the Moon 226

9.1 The Moon 228

      9.1.1 Surface 228

      9.1.2 Atmosphere 230

      9.1.3 Interior 230

      9.1.4 Magnetic Field 231

9.2 Mercury 231

      9.2.1 Surface 231

      9.2.2 Atmosphere 236

      9.2.3 Interior 236

      9.2.4 Magnetic Field 236

9.3 Venus 238

      9.3.1 Surface 238

      9.3.2 Atmosphere 241

      9.3.3 Interior 242

9.4 Mars 242

      9.4.1 Global Appearance 243

      9.4.2 Interior 243

      9.4.3 Atmosphere 244

      9.4.4 Frost, Ice and Glaciers 247

      9.4.5 Water on Mars 248

      9.4.6 Geology at Rover Sites 250

      9.4.7 Magnetic Field 253

      Key Concepts 255

      Further Reading 255

      Problems 256

10 Planetary Satellites 258

10.1 Moons of Mars: Phobos and Deimos 259

10.2 Satellites of Jupiter 260

      10.2.1 Io 260

      10.2.2 Europa 263

      10.2.3 Ganymede and Callisto 267

      10.2.4 Jupiter's Small Moons 269

10.3 Satellites of Saturn 269

      10.3.1 Titan 270

      10.3.2 Midsized Saturnian Moons 272

      10.3.3 Enceladus 273

      10.3.4 Small Regular Satellites of Saturn 275

      10.3.5 Saturn's Irregular Moons 275

10.4 Satellites of Uranus 276

10.5 Satellites of Neptune 278

Key Concepts 281

Further Reading 281

Problems 282

11 Meteorites 284

11.1 Classification 286

11.2 Source Regions 289

11.3 Fall Phenomena 292

11.4 Chemical and Isotopic Fractionation 295

      11.4.1 Chemical Separation 296

      11.4.2 Isotopic Fractionation 296

11.5 Main Components of Chondrites 297

11.6 Radiometric Dating 298

      11.6.1 Decay Rates 298

      11.6.2 Dating Rocks 300

      11.6.3 Extinct-Nuclide Dating 300

      11.6.4 Cosmic-Ray Exposure Ages 301

11.7 Meteorite Clues to Planet Formation 301

      11.7.1 Meteorites from Differentiated Bodies 302

      11.7.2 Primitive Meteorites 303

      11.7.3 Presolar Grains 304

      Key Concepts 305

      Further Reading 305

      Problems 306

12 Minor Planets and Comets 309

12.1 Nomenclature 310

12.2 Orbits 311

      12.2.1 Asteroids 312

      12.2.2 Trans-Neptunian Objects, Centaurs 314

      12.2.3 Oort Cloud 316

      12.2.4 Nongravitational Forces 317

12.3 Size Distribution and Collisions 318

      12.3.1 Size Distribution 318

      12.3.2 Collisions and Families 319

      12.3.3 Collisions and Rubble Piles 320

      12.3.4 Binary and Multiple Systems 321

      12.3.5 Comet-Splitting Events 322

      12.3.6 Mass and Density 323

      12.3.7 Rotation 324

      12.3.8 Interplanetary Dust 325

12.4 Bulk Composition and Taxonomy 325

      12.4.1 Asteroid Taxonomy 326

      12.4.2 Taxometric Spatial Distribution 327

      12.4.3 Trans-Neptunian Object Spectra 328

12.5 Individual Minor Planets 328

      12.5.1 Near-Earth Asteroids 328

      12.5.2 Main Belt Asteroids 330

      12.5.3 Trans-Neptunian Objects 333

12.6 Shape and Structure of Comet Nuclei 334

12.7 Comas and Tails of Comets 336

      12.7.1 Brightness 337

      12.7.2 Ultimate Fate of Coma Gas 338

      12.7.3 Dust Entrainment 338

      12.7.4 Morphology and Composition of Dust Tails 339

      12.7.5 Ion Tails 341

      12.7.6 Comet Composition 342

12.8 Temporal Evolution of the Population of Asteroids and Comets 343

Key Concepts 344

Further Reading 344

Problems 345

13 Planetary Rings 348

13.1 Tidal Forces and Roche's Limit 351

13.2 Flattening and Spreading of Rings 354

13.3 Observations 355

      13.3.1 Jupiter's Rings 355

      13.3.2 Saturn's Rings 356

      13.3.3 Uranus's Rings 364

      13.3.4 Neptune's Rings 366

13.4 Ring– Moon Interactions 366

      13.4.1 Resonances 366

      13.4.2 Spiral Waves 367

      13.4.3 Shepherding 369

13.5 Origins of Planetary Rings 371

Key Concepts 373

Further Reading 374

Problems 374

14 Extrasolar Planets 377

14.1 Detecting Extrasolar Planets 378

      14.1.1 Timing Pulsars and Pulsating Stars 378

      14.1.2 Radial Velocity 379

      14.1.3 Astrometry 380

      14.1.4 Transit Photometry 381

      14.1.5 Transit Timing Variations 382

      14.1.6 Microlensing 383

      14.1.7 Imaging 384

      14.1.8 Other Techniques 385

      14.1.9 Exoplanet Characterization 385

      14.1.10 Planets in Multiple Star Systems 386

14.2 Observations of Extrasolar Planets 387

      14.2.1 Pulsar Planets 387

      14.2.2 Radial Velocity Detections 389

      14.2.3 Transiting Planets 391

      14.2.4 NASA's Kepler Mission 394

      14.2.5 Mass–Radius Relationship 396

      14.2.6 Planets Orbiting Pulsating Stars 398

      14.2.7 Microlensing Detections 398

      14.2.8 Images and Spectra of Exoplanets 398

      14.2.9 Planets in Multiple Star Systems 399

14.3 Exoplanet Statistics 400

      14.3.1 Radial Velocity Surveys 400

      14.3.2 Kepler Planet Candidates 401

      14.3.3 Microlensing 403

14.4 Physics of Exoplanets 404

14.5 Conclusions 407

Key Concepts 410

Further Reading 410

Problems 410

15 Planet Formation 413

15.1 Solar System Constraints 414

15.2 Star Formation: A Brief Overview 417

      15.2.1 Molecular Cloud Cores 417

      15.2.2 Collapse of Molecular Cloud Cores 418

      15.2.3 Young Stars and Circumstellar Disks 419

15.3 Evolution of the Protoplanetary Disk 420

      15.3.1 Infall Stage 420

      15.3.2 Disk Dynamical Evolution 422

      15.3.3 Chemistry in the Disk 423

      15.3.4 Clearing Stage 425

15.4 Growth of Solid Bodies 425

      15.4.1 Planetesimal Formation 425

      15.4.2 From Planetesimals to Planetary Embryos 426

15.5 Formation of the Terrestrial Planets 430

      15.5.1 Dynamics of the Final Stages of Planetary Accumulation 430

      15.5.2 Accretional Heating and Planetary Differentiation 430

      15.5.3 Accumulation (and Loss) of Atmospheric Volatiles 433

15.6 Formation of the Giant Planets 434

15.7 Planetary Migration 437

      15.7.1 Torques from Protoplanetary Disks 437

      15.7.2 Scattering of Planetesimals 437

15.8 Small Bodies Orbiting the Sun 438

      15.8.1 Asteroid Belt 438

      15.8.2 Comet Reservoirs 439

15.9 Planetary Rotation 440

15.10 Satellites of Planets and of Minor Planets 440

      15.10.1 Giant Planet Satellites 440

      15.10.2 Formation of the Moon 441

      15.10.3 Satellites of Small Bodies 443

15.11 Exoplanet Formation Models 443

15.12 Confronting Theory with Observations 444

      15.12.1 Solar System's Dynamical State 444

      15.12.2 Composition of Planetary Bodies 445

      15.12.3 Extrasolar Planets 446

      15.12.4 Successes, Shortcomings and Predictions 446

      Key Concepts 447

      Further Reading 447

      Problems 448

16 Planets and Life 452

16.1 Drake Equation 453

16.2 What Is Life? 454

16.3 Biological Thermodynamics 456

16.4 Why Carbon and Water? 458

16.5 Circumstellar Habitable Zones 459

16.6 Planetary Requirements for Life 462

      16.6.1 Biogeochemical Cycles 463

      16.6.2 Gravitational and Magnetic Fields 465

      16.6.3 Can Moonless Planets Host Life? 465

      16.6.4 Giant Planets and Life 466

16.7 Impacts and Other Natural Disasters 467

      16.7.1 K–T Event 468

      16.7.2 Frequency of Impacts 470

      16.7.3 Volcanos and Earthquakes 471

16.8 How Life Affects Planets 472

16.9 Origin of Life 473

      16.9.1 Synthesis of Organic Molecules 474

      16.9.2 The Phylogenetic Tree and Last Universal Common Ancestor 475

      16.9.3 Young Earth and Early Life 478

16.10 Darwinian Evolution 479

      16.10.1 Sex, Gene Pools and Inheritance 481

      16.10.2 Development of Complex Life 482

      16.10.3 Intelligence and Technology 484

16.11 Mass Extinctions 485

16.12 Panspermia 486

16.13 Detecting Extraterrestrial Life 488

      16.13.1 Signs of (Past) Life on Mars? 489

      16.13.2 Search for Extra-Terrestrial Intelligence 491

16.14 Are We Alone? 492

Key Concepts 493

Further Reading 494

Problems 496

Appendix A: Symbols Used 501

Appendix B: Acronyms Used 505

Appendix C: Units and Constants 509

Appendix D: Periodic Table of Elements 513

Appendix E: Solar System Tables 515

Appendix F: Interplanetary Spacecraft 527

Appendix G: Recent Planetary Images 533

References 553

Index 561

查看PDF
查看更多

馆藏单位

中科院文献情报中心