外文科技图书简介
当前位置:首页 > 检索结果 >文献详细内容

书名:Physical chemistry for the chemical sciences

责任者:Raymond Chang  |  Williams college  |  John W. Thoman  |  Jr.  |  Williams college.

ISBN\ISSN:9781782620877,1782620877 

出版时间:2014

出版社:University Science Books,

分类号:化学


摘要

Following in the wake of Chang's two other best-selling physical chemistry textbooks (Physical Chemistry for the Chemical and Biological Sciences and Physical Chemistry for the Biosciences), this new title introduces laser spectroscopist Jay Thoman (Williams College) as co-author. This comprehensive new text has been extensively revised both in level and scope. Targeted to a mainstream physical chemistry course, this text features extensively revised chapters on quantum mechanics and spectroscopy, many new chapter-ending problems, and updated references, while biological topics have been largely relegated to the previous two textbooks. Other topics added include the law of corresponding states, the Joule-Thomson effect, the meaning of entropy, multiple equilibria and coupled reactions, and chemiluminescence and bioluminescence. One way to gauge the level of this new text is that students who have used it will be well prepared for their GRE exams in the subject. Careful pedagogy and clear writing throughout combine to make this an excellent choice for your physical chemistry course.

查看更多

目录

Preface xv

CHAPTER 1 Introduction and Gas Laws 1

1.1 Nature of Physical Chemistry 1

1.2 Some Basic Definitions 1

1.3 An Operational Definition of Temperature 2

1.4 Units 3

      • Force 4

      • Pressure 4

      • Energy 5

      • Atomic Mass, Molecular Mass, and the Chemical Mole 6

1.5 The Ideal Gas Law 7

      • The Kelvin Temperature Scale 8

      • The Gas Constant R 9

1.6 Dalton's Law of Partial Pressures 11

1.7 Real Gases 13

      • The van der Waals Equation 14

      • The Redlich-Kwong Equation 15

      • The Virial Equation of State 16

1.8 Condensation of Gases and the Critical State 18

1.9 The Law of Corresponding States 22

Problems 27

CHAPTER 2 Kinetic Theory of Gases 35

2.1 The Model 35

2.2 Pressure of a Gas 36

2.3 Kinetic Energy and Temperature 38

2.4 The Maxwell Distribution Laws 39

2.5 Molecular Collisions and the Mean Free Path 45

2.6 The Barometric Formula 48

2.7 Gas Viscosity 50

2.8 Graham's Laws of Diffusion and Effusion 53

2.9 Equipartition of Energy 56

Appendix 2.1 Derivation of Equation 2.29 63

Problems 66

CHAPTER 3 The First Law of Thermodynamics 73

3.1 Work and Heat 73

      • Work 73

      • Heat 79

3.2 The First Law of Thermodynamics 80

3.3 Enthalpy 83

      • A Comparison of 6.U and 6.H 84

3.4 A Closer Look at Heat Capacities 88

3.5 Gas Expansion 91

      • Isothermal Expansion 92

      • Adiabatic Expansion 92

3.6 The Joule-Thomson Effect 96

3.7 Thermochemistry 100

      • Standard Enthalpy of Formation 100

      • Dependence of Enthalpy of Reaction on Temperature 107

3.8 Bond Energies and Bond Enthalpies 110

      • Bond Enthalpy and Bond Dissociation Enthalpy 111

Appendix 3.1 Exact and Inexact Differentials 116

Problems 120

CHAPTER 4 The Second Law of Thermodynamics 129

4.1 Spontaneous Processes 129

4.2 Entropy 131

      • Statistical Definition of Entropy 132

      • Thermodynamic Definition of Entropy 134

4.3 The Carnot Heat Engine 135

      • Thermodynamic Efficiency 138

      • The Entropy Function 139

      • Refrigerators, Air Conditioners, and Heat Pumps 139

4.4 The Second Law of Thermodynamics 142

4.5 Entropy Changes 144

      • Entropy Change due to Mixing of Ideal Gases 144

      • Entropy Change due to Phase Transitions 146

      • Entropy Change due to Heating 148

4.6 The Third Law of Thermodynamics 152

      • Third-Law or Absolute Entropies 152

      • Entropy of Chemical Reactions 155

4.7 The Meaning of Entropy 157

      • Isothermal Gas Expansion 160

      • Isothermal Mixing of Gases 160

      • Heating 160

      • Phase Transitions 161

      • Chemical Reaction s 161

4.8 Residual Entropy 161

Append ix 4.1 Statements of the Second Law of Thermodynamics 165

Problems 168

CHAPTER 5 Gibbs and Helmholtz Energies and Their Applications 175

5.1 Gibbs and Helmholtz Energies 175

5.2 The Meaning of Helmholtz and Gibbs Energies 178

      • Helmholtz Energy 178

      • Gibbs Energy 179

5.3 Standard Mola r Gibbs Energy of Formation ( rG ) 182

5.4 Dependence of Gibbs Energy on Temperature and Pressure 185

      • Dependence of G on Temperature 185

      • Dependence of G on Pressure 186

5.5 Gibbs Energy and Phase Equilibria 188

      • The Clapeyron and the Clausius-Clapeyron Equations 190

      • Phase Diagrams 192

      • The Gibbs Phase Rule 196

5.6 Thermodynamics of Rubber Elasticity 196

Appendix 5.1 Some Thermodynamic Relationships 200 Appendix 5.2 Derivation of the Gibbs Phase Ru le 203

Problems 207

CHAPTER 6 Nonelectrolyte Solutions 213

6.1 Concentration Units 213

      • Percent by Weight 213

      • Mole Fraction (x) 214

      • Molarity (M) 214

      • Molality (m) 214

6.2 Partial Molar Quantities 215

      • Partial Molar Volume 215

      • Partial Molar Gibbs Energy 216

6.3 Thermodynamics of Mixing 218

6.4 Binary Mixtures of Volatile Liquids 221

      • Raoult's Law 222

      • Henry's Law 225

6.5 Real Solutions 228

      • The Solvent Component 228

      • The Solute Component 229

6.6 Phase Equilibria of Two-Component Systems 231

      • Distillation 231

      • Solid-Liquid Equilibria 237

6.7 Colligative Properties 238

      • Vapor-Pressure Lowering 239

      • Boiling-Point Elevation 239

      • Freezing-Point Depression 243

      • Osmotic Pressure 245 Problems 255

CHAPTER 7 Electrolyte Solutions 261

7.1Electrical Conduction in Solution 261

      • Some Basic Definitions 261

      • Degree of Dissociation 266

      • Ionic Mobility 268

      • Applications of Conductance Measurements 269

7.2 A Molecular View of the Solution Process 271

7.3 Thermodynamics of Ions in Solution 274

      • Enthalpy, Entropy, and Gibbs Energy of Formation of Ions in Solution 275

7.4 Ionic Activity 278

7.5 Debye-Hilckel Theory of Electrolytes 282

      • The Salting-In and Salting-Out Effects 286

7.6 Colligativve Properties of Electrolyte Solutions 288

      • Colligative Properties of Electrolyte Solutions 288

      • The Donnan Effect 291

Appendix7.1 Notes on Electrostatics 295

Appendix7.2 The Donnan Effect Involving Proteins Bearing Multiple Charge 298

Problems 301

CHAPTER 8 Chemical Equilibrium 305

8.1 Chemical Equilibrium in Gaseous Systems 305

      • Ideal Gases 305

      • A Closer Look at Equation 8.7 310

      • A Comparison of llrG。with llrG 311

      • Real Gases 313

8.2 Reactions in Solution 315

8.3 Heterogeneous Equilibria 316

      • Solubility Equilibria 318

8.4 Multiple Equilibria a11d Coupled Reactions 319

      • Principle of Coupled Reactions 321

8.5 The Influence of Temperature Pressure, and Catalysts on the Equilibrium Constant 322

      • The Effect of Temperature 322

      • The Effect of Pressure 325

      • The Effect of a Catalyst 327

8.6 Binding of Ligands and Metal Ions to Macromolecules 328

      • One Binding Site per Macromolecule 328

      • Equivalent Binding Sites per Macromolecule 329

      • Equilibrium Dia lysis 332

Appendix 8.1 The Relationship Between Fugacity and Pressure 335

Appendix 8.2 The Relationships Between K1 and K2 and the Intrinsic Dissociation Constant K 338

Problems 342

CHAPTER 9 Electrochemistry 351

9.1 Electrochemical Cells 351

9.2 Single-Electrode Potential 353

9.3 Thermodynamics of Electrochemical Cells 356

      • The Nernst Equation 360

      • Temperature Dependence of EMF 362

9.4 Types of Electrodes 363

      • Metal Electrodes 363

      • Gas Electrodes 364

      • Metal-Insoluble Salt Electrodes 364

      • The Glass Electrode 364

      • Ion-Selective Electrodes 365

9.5 Types of Electrochemical Cells 365

      • Concentration Cells 365

      • Fuel Cells 366

9.6 Applications of E扣EMeasurements 367

      • Determination of Activity Coefficients 367

      • Determination of pH 368

9.7 Membrane Potential 368

      • The Goldman Equation 371

      • The Action Potential 372

Problems 378

CHAPTER 10 Quantum Mechanics 383

10.1 Wave Properties of Light 383

10.2 Blackbody Radiation and Planck 's Quantum Theory 386

10.3 The Photoelectric Effect 388

10.4 Bohr's Theory of the Hydrogen Emission Spectrum 390

10.5 de Broglie's Postulate 397

10.6 The Heisenberg Uncertainty Principle 401

10.7 Postulates of Quantum Mechanics 403

10.8 The Schrodinger Wave Equation 409

10.9 Particle in a One-Dimensional Box 412

      • Electronic Spectra of Polyenes 418

10.10 Particle in a Two-Dimensional Box 420

10.11 Particle on a Ring 425

10.12 Quantum Mechanical Tunneling 428

      • Scanning Tunneling νlicroscopy 431

Appendix 10.1 The Bracket Notation in Quantum Mechanics 433

Problems 437

CHAPTER 11 Applications of Quantum Mechanics to Spectroscopy 447

11.1 Vocabulary of Spectroscopy 447

      • Absorption and Emission 447

      • Units 448

      • Regions of the Spectrum 448

      • Linewidth 449

      • Resolution 452

      • Intensity 453

      • Selection Rules 455

      • Signal-to-Noise Ratio 456

      • The Beer-Lambert Law 457

11.2 Microwave Spectroscopy 458

      • The Rigid Rotor Model 458

      • Rigid Rotor Energy Levels 463

      • Microwave Spectra 464

11.3 Infrared Spectroscopy 469

      • The Harmonic Oscillator 469

      • Quantum Mechanica l Solution to the Harmonic Oscillator 471

      • Tu nneling and the Harmonic Oscillator Wave Fu nctions 474

      • IR Spectra 475

      • Simultaneous Vibrational and Rotational Transitions 479

11.4 Symmetry and Group Theory 482

      • Symmetry Elements 482

      • Molecu lar Symmetry and Dipole Moment 483

      • Point Groups 484

      • Character Tables 484

11.5 Raman Spectroscopy 486

      • Rotational Raman Spectra 489

Appendix 11.1 Fourier-Transform Infrared Spectroscopy 491

Problems 496

CHAPTER 12 Electronic Structure of Atoms 503

12.1 The Hydrogen Atom 503

12.2 The Radial Distribution Function 505

12.3 Hydrogen Atomic Orbitals 510

12.4 Hydrogen Atom Energy Levels 514

12.5 Spin Angular Momentum 515

12.6 The Helium Atom 517

12.7 Pauli Exclusion Principle 519

12.8 Aufbau Principle 523

      • Hund's Rules 524

      • Periodic Variations in Atomic Properties 528 12.9 Variational Principle 530

12.10 Hartree-Fock Self-Consistent-Field Method 536

12.11 Perturbation Theory 540

Appendix 12.1 Proof of the Variational Principle 546

Problems 551

CHAPTER 13 Molecular Electronic Structure and the Chemical Bond 557

13.1 The Hydrogen Molecular Cation 557

13.2 The Hydrogen Molecule 561 13.3 Valence Bond Approach 563

13.4 Molecular Orbital Approach 567

13.5 Homonuclear and Heteronuclear Diatomic Molecules 570

      • Homonuclear Diatomic Molecules 570

      • Heteronuclear Diatomic Molecules 573

      • Electronegativity, Polarity, and Dipole Moments 576

13.6 Polyatomic Molecules 578

      • Molecular Geometry 578

      • Hybridization of Atomic Orbitals 579

13.7 Resonance and Electron Delocalization 585

13.8 Hiickel Molecular Orbital Theory 589

      • Ethylene (C2HJ 590

      • Butadiene (C4H6) 595

      • Cyclobutadiene (C4H4) 598

      13.9 Computational Chemistry Methods 600

      • Molecular Mechanics (Force Field) Methods 601

      • Empirical and Semi-Empirical Methods 601

      • Ab Initio Methods 602

Problems 605

CHAPTER 14 Electronic Spectroscopy and Magnetic Resonance Spectroscopy 611

14.1 Molecular Electronic Spectroscopy 611

      • Organic Molecules 613

      • Charge-Transfer Interactions 616

      • Application of the Beer-Lambert Law 617

      14.2 Fluorescence and Phosphorescence 619

      • Fluorescence 619

      • Phosphorescence 621 14.3 Lasers 622

      • Properties of Laser Light 626

14.4 Applications of Laser Spectroscopy 629

      • Laser-Induced Fluorescence 629

      • Ultrafast Spectroscopy 630

      • Single-Molecule Spectroscopy 632 14.5 Photoelectron Spectroscopy 633

14.6 Nuclear Magnetic Resonance Spectroscopy 637

      • The Boltzmann Distribution 640

      • Chemical Shifts 641

      • Spin-Spin Coupling 642

      • NMR and Rate Processes 644

      • NMR of Nuclei Other Than 1H 646

      • Solid-State NMR 648

      • Fourier-Transform NMR 649

      • Magnetic Resonance Imaging (MRI) 651

14.7 Electron Spin Resonance Spectroscopy 652

Appendix 14.1 The Franck-Condon Principle 657

Appendix 14.2 A Comparison of FI-IR and FT-NMR 659

Problems 665

CHAPTER 15 Chemical Kinetics 671

15.l Reaction Rate 671

15.2 Reaction Order 672

      • Zero-Order Reactions 673

      • First-Order Reactions 674

      • Second-Order Reactions 678

      • Determination of Reaction Order 681

15.3 Molecularity of a Reaction 683

      • Unimolecular Reactions 684

      • Bimolecular Reactions 686

      • Termolecular Reactions 686

15.4 More Complex Reactions 686

      • Reversible Reactions 686

      • Consecutive Reactions 688

      • Chain Reactions 690

15.5 The Effect of Temperature on Reaction Rate 691

      • The Arrhenius Equation 692

15.6 Potential-Energy Surfaces 694

15.7 Theories of Reaction Rates 695

      • Collision Theory 696

      • Transition-State Theory 698

      • Thermodynamic Formulation of Transition-State Theory 699

15.8 Isotope Effects in Chemical Reactions 703

15.9 Reactions in Solution 705

15.10 Fast Reactions in Solution 707

      • The Flow Method 708

      • The Relaxation Method 709

15.11 Oscillating Reactions 712

15.12 Enzyme Kinetics 714

      • Enzyme Catalysis 715

      • The Equations of Enzyme Kinetics 716

      • Michaelis ν1enten Kinetics 717

      • Steady-State Kinetics 718

      • The Significance of KM and Vmax 721

Appendix 15.1 Derivation of Equation 15.9 724

Appendix 15.2 Derivation of Equation 15.51 726

Problems 731

CHAPTER 16 Photochemistry 743

16.1 Introduction 43

      • Thermal Versus Photochemical Reactions 743

      • Primary Versus Secondary Processes 744

      • Quantum Yields 744

      • Measurement of Light Intensity 746

      • Action Spectrum 747

16.2 Earth's Atmosphere 748

      • Composition of the Atmosphere 748

      • Regions of the

Atmosphere 749

      • Residence Time 750

16.3 The Greenhouse Effect 751

16.4 Photochemical Smog 754

      • Formation of Nitrogen Oxides 755

      • Formation of 03 755

      • Formation of Hydroxyl Radical 756

      • Formation of Other Secondary Pollutants 757

      • Harmful Effects and Prevention of Photochemical Smog 757

16.5 Stratospheric Ozone 759

      • Formation of the Ozone Layer 759

      • Destruction of Ozone 760

      • Polar Ozone Holes 762

      • Ways to Curb Ozone Depletion 763 16.6 Chemiluminescence and Bioluminescence 764

      • Chemiluminescence 764

      • Bioluminescence 765 16.7 Biological Effects of Radiation 766

      • Sunlight and Skin Cancer 766

      • Photomedicine 767

      • Light-Activated Drugs 768 Problems 774

CHAPTER 17 Intermolecular Forces 779

17.1 Intermolecular Interactions 779

17.2 The Ionic Bond 780

17.3 Types of Intermolecular Forces 782

      • Dipole-Dipole Interaction 782

      • Ion-Dipole Interaction 784

      • Ion-Induced Dipole and Dipole-Induced Dipole Interactions 785

      • Dispersion, or London, Interactions 788

      • Repulsive and Total Interactions 789

17.4 Hydrogen Bonding 791

17.5 The Structure and Properties of Water 796

      • The Structure of Ice 797

      • The Structure of Water 798

      • Some Physiochemical Properties of Water 800

17.6 Hydrophobic Interaction 801

Problems 806

CHAPTER 18 The Solid State 809

18.1 Classification of Crystal Systems 809

18.2 The Bragg Equation 812

18.3 Structural Determination by X-Ray Diffraction 814

      • The Powder Method 816

      • Determination of the Crystal Structure of NaCl 817

      • The Structure Factor 820

      • Neutron Diffraction 822

18.4 Types of Crystals 823

      • Metallic Crystals 823

      • Ionic Crystals 829

      • Covalent Crystals 834

      • Molecular Crystals 835

Appendix 18.1 Derivation of Equation 18.3 836

Problems 840

CHAPTER 19 The Liquid State 843

19.1 Structure of Liquids 843

19.2 Viscosity 845

      • Blood Flow in the Human Body 848

19.3 Surface Tension 851

      • The Capillary-Rise Method 852

      • Surface Tension in the Lungs 854

19.4 Diffusion 856

      • Fick's Laws of Diffusion 857

19.5 Liquid Crystals 863

      • Thermotropic Liquid Crystals 864

      • Lyotropic Liquid Crystals 868

Appendix 19.1 Derivation of Equation 19.13 869

Problems 872

CHAPTER 20 Statistical Thermodynamics 875

20.1 The Boltzmann Distribution Law 875

20.2 The Partition Function 878

20.3 Molecular Partition Function 881

      • Translational Partition Function 881

      • Rotational Partition Function 883

      • Vibrational Partition Function 884

      • Electronic Partition Function 886

20.4 Thermodynamic Quantities from Partition Functions 886

      • Internal Energy and Heat Capacity 887

      • Entropy 888

20.5 Chemical Equilibrium 893

20.6 Transition-State Theory 898

      • Comparison Between Collision Theory and Transition-State Theory 900

Appendix 20.1 Justification of Q = qN/ N! for Indistinguishable Molecules 903

Problems 905

Appendix A Review of Mathematics and Physics 907

Appendix B Thermodynamic Data 917

Glossary 923

Answers to Even-Numbered Computational Problems 937

Index 941

查看更多

馆藏单位

中科院文献情报中心