外文科技图书简介
当前位置:首页 > 检索结果 >文献详细内容

书名:Atomic absorption spectrometry

责任者:Alfredo Sanz-Medel and Rosario Pereiro.  |  Pereiro, Rosario.

ISBN\ISSN:9781606504352,1606504355 

出版时间:2014

出版社:Momentum Press,

分类号:化学

版次:2nd ed.


前言

Atomic Absorption Spectroscopy (AAS) is a well-established elemental analysis technology. It remains one of the most popular and cost-effective analysis tools used by chemists, physicists, and materials scientists worldwide. This second edition offers a concise introduction to AAS concepts, essential methodologies, and important applications. It has been comprehensively updated for the latest advances in AAS techniques and instruments. Highlights include: * Overviews of all basic atomic absorption concepts, including atomic line spectra theory, common sampling techniques, radiation sources, spectrometers, and detectors; * Coverage of hydride generation, cold vapor generation and electrothermal generation, as well as flow injection analysis (FIA) to enhance AAS analytical performance; * New sections on troubleshooting and quality control guidelines, chemometrics, and emerging fields of applications, including analysis of nanoparticles; and * Selected examples of standards for chemical analysis.

查看更多

目录

Preface xi

Chapter 1. An Introduction to Analytical Atomic Spectrometry 1

1.1 Basic Interactions of Electromagnetic Radiation with Atoms for Chemical Analysis 1

1.2 Atomic Line Spectra and Their Origin 4

1.3 Atomic Line Characteristics 7

1.4 Atomic Line Spectral Width 9

      1.4.1 Natural Broadening of Lines 10

      1.4.2 Doppler Broadening 11

      1.4.3 Lorentz Broadeni ng 12

      1.4.4 Self-Absorption Effects 14

      1.4.5 Other Broadening Processes

1.5 A Comparative Overview of Analytical Atomic 15

      Spectrometric Techniques 16

      1.5.1 Dissolved Sample Analysis Techniques 16

      1.5.2 Direct Solid Analysis Techniques 18

Chapter 2. Theory and Basic Concepts in Atomic Absorption Spectrometry 21

2.1 General Introduction 21

2.2 The Basic Atomic Absorption Spectrometry Experiment 23

2.3 The Absorption Coefficient Concept 25

2.4 Quantitative Analysis by Atomic Absorption Spectrometry 28

2.5 Interferences in Flame Analytical Atomic Spectrometry Techniques 31

      2.5.1 Spectral Interferences 31

      2.5.2 Physical (Transport) Interferences 32

      2.5.3 Chemical Interferences 32

      2.5.4 Ionization Interferences 33

      2.5.5 Temperature Variations in the Atomizer 34

      2.5.6 Light Scattering and Unspecific Absorptions 34

      2.5.7 Quenchi ng of the Fluorescence 34

2.6 Analytical Performance Characteristics of AAS 35

      2.6.1 Sensitivity and Detection Limits 36

      2.6.2 Selectivity of the Three Flame-Based Techniq ues 37

      2.6.3 Accuracy and Precision 39

      2.6.4 Analytical Linear Range 40

      2.6.5 Versatility and Sample Throughput 40

      2.6.7 Robustness and Availability of Well-Proven Methodologies 41

Chapter 3. Basic Components of Atomic Absorption Spectrometric Instruments 43

3.1 Introduction : Single-Beam and Double-Beam Instruments 43

3.2 Primary Radiation Sources 45

      3.2.1 Hollow Cathode Lamps 46

      3.2.1.1 Details of the Components of a HCL 47

      3.2.1.2 HCL Operation 47

      3.2.1.3 Multi-element HCLs 48

      3.2.2 Electrodeless Discharge Lamps 49

      3.2.3 Boosted Discharge Lamps 50

      3.2.4 Diode Lasers 51

      3.2.5 Continuous Sources 51

3.3 Atomizers: A General View 52

3.4 Wavelength Selectors 53

3.5 Detectors 56

3.6 Background Correctors 58

      3.6.1 Deuterium Background Corrector 58

      3.6.2 Zeeman Correction 60

      3.6.3 Smith-Hieftje Correction 62

Chapter 4. Flame Atomic Absorption Spectrometry 65

4.1 Introduction 65

4.2 The Atomizer Unit in Flame Atomic Absorption Spectrometry 66

      4.2.1 Nebulizer, Nebulization Chamber, and Burner 67

      4.2.2 Flame 71

      4.2.3 Special Sampling Techniques 75

4.3 Flame Atomic Absorption Instrumentation 76

      4.3.1 Flame Atomic Absorption Spectrometers 77

      4.3.2 Accessories 78

      4.3.2.1 Autosamplers 78

      4.3.2.2 Atom Concentrator Tube or Slotted Tube Atom Trap 78

      4.3.2.3 High-Solid Analyzer 79

      4.3.2.4 Flame Microsampler 79

      4.3.2.5 Automatic Burner Rotation 79

4.4 Analytical Performance Characteristics and Interferences 79

      4.4.1 Spectral Interferences 80

      4.4.2 Nonspectral Interferences 80

      4.4.3 Calibration in Flame Atomic Absorption Spectrometry 82

      4.4.4 Analytical Figures of Merit 83

      4.4.5 Use of Organic Solvents 84

4.5 Applications and Example Case Studies 84

      4.5.1 Determination of Calci um in Milk 85

      4.5.2 Determination of Molybdenum in Fertilizers 85

      4.5.3 Determination of Lead in Gasoline 86

      4.5.4 Determination of Boron, Phosphorus, and Sulfur by High-Resolution Continuum Source FAAS for Plant Analysis 87

Chapter 5. Electrothermal Atomic Absorption Spectrometry 89

5.1 Introduction 89

5.2 The Electrothermal Atomizer 91

      5.2.1 The Atomi zation Tube 93

      5.2.2 Side-Heated Atomizers Basic Steps in Analysis by Electrothermal Atomic 95

5.3 Absorption Spectrometry: The Temperature Program 97

5.4 Instrumentation 98

      5.4.1 Sample-Introd uction System 99

      5.4.2 Instrumental Background Correction 99

      5.4.3 Data Acquisition and Treatment 100

5.5 Interferences 101

      5.5.1 Spectral Interferences 101

      5.5.2 Nonspectral Interferences 102

5.6 Chemical Modifiers 102

5.7 Atomization From Solids and Slurries 104

5.8 Analytical Performance Characteristics of Electrothermal Atomic Absorption Spectrometric Methods 107

5.9 Application s and Example Case Studies 109

      5.9.1 Determination of Lead in Human Urine and Blood 109

      5.9.2 Determination of Selenium in Human Milk 110

      5.9.3 Determination of Sulfur in Coal and Ash Slurry 111

Chapter 6. Hydride Generation and Cold-Vapor Atomic Absorption Spectrometry 113

6.1 Introduction 113

6.2 Volatile Hydride Generation by Tetrahydroborate (III) in Aqueous Media 115

      6.2.1 Mechanisms of Hydride Formation 115

      6.2.2 Basic Instrumentation 116

      6.2.3 Limits of Detection 119

      6.2.4 Selectivity: Sources oflnterferences 120

6.3 Electrochemical Generation of Volatile Hydrides 121

6.4 Cold-Vapor Generation 123

      6.4.1 Mercury 123

      6.4.2 Cadmium 124

6.5 Trapping/Preconcentration of Volatilized Analytes 125

6.6 Applications and Example Case Studies 126

      6.6.1 Determination of Arsenic in Waters 128

      6.6.2 Determination of Mercury and Methylmercury in Hair 129

      6.6.3 Determination of Selenium in Bean and Soil Samples Using Hydride Generation-Electrothermal Atomic Absorption Spectrometry 130

Chapter 7. Flow Analysis and Atomic Absorption Spectrometry 133

7.1 Introduction 133

7.2 Flow Injection Analysis and Atomic Absorption Spectrometry 136

7.3 Basic Instrument Components: Sample Introduction Unit, Propulsion System, and Connecting Tubes 137

      7.3.1 Sample Introduction Unit 138

      7.3.2 Propulsion System 138

      7.3.3 Connecting Tubes 139

7.4 Simple Common Manifolds: Dilution, Reagent Addition, and Calibration 140

7.5 Solid-Liquid Separation and Preconcentration 142

      7.5.1 Sorption 142

      7.5.2 Precipitation and Coprecipitation 144

7.6 Gas-Phase Formation Strategies 144

      7.6.1 Flow Systems for the Formation of Volatile Derivatives of the Analyte(s) 145

      7.6.2 Approaches for Preconcentration in the Gas Phase 147

7.7 Miniaturized Preconcentration Methods Based on Liquid-Liq uid Extraction 148

7.8 Sample Digestion 149

      7.8.1 Online Photo-Oxid ation Flow Systems 150

      7.8.2 Online Microwave-Assisted Digestion 150

7.9 Chromatographic Separations Coupled Online to Atomic Absorption Spectrometry 151

7.10 Applications and Example Case Studies 152

      7.10.1 Online Al umini um Preconcentration and Its Application to the Determi nation of the Metal in Dialysis Concen trates 153

      7.10.2 Indirect Atomic Absorption Spectrometric Determi nation of Iodine in Milk Products 154

      7.10.3 High-Performance Liquid Chromatography-Microwave Digestion-Hydride Generation-AAS for Inorganic and Organic Arsenic Speciation in Fish Tissue 154

Chapter 8. Emerging Fields of Applications, Chemometrics, Quality-Control and Troubleshooting 157

8.1 Emerging Fields of Atomic Absorption 157

Spectrometry Applications 157

8.2 Basic Chemometric Techniq ues in AAS 159

8.3 Quality-Control Guidelines and Troubleshooting 160

      8.3.1 Flame AAS 161

      8.3.1.1 Light system 161

      8.3.1.2 Nebulizer and Bu rner System 161

      8.3.1.3 System Cleanliness 162

      8.3.2 Electrothermal AAS 162

      8.3.2.1 Autosampler 162

      8.3.2.2 Furnace Workhead 162

      8.3.2.3 Background Correction 163

Appendix A Buyer's Guide 165

Appendix B Glossary of Terms 167

Appendix C Standards 175

References 179

Index 185

查看更多

作者简介

Rosario Pereiro is Professor of Analytical Chemistry (University of Oviedo). She had a postdoctoral fellowship at Indiana University (USA) and was a visiting scientist at the University of Manchester (UK), at Clemson University (USA), and at the Graz University of Technology (Austria). She has supervised 15 Ph.D. theses and over 30 Master theses. She has authored or co-authored over 150 peer-reviewed journal articles, 15 book chapters, the book “Atomic Absorption Spectrometry: An Introduction” (2008) and holds six patents.

查看更多

馆藏单位

中科院文献情报中心