外文科技图书简介
当前位置:首页 > 检索结果 >文献详细内容

书名:Thermal spray fundamentals

责任者:Pierre L. Fauchais  |  Joachim V. R. Heberlein  |  Maher I. Boulos.

ISBN\ISSN:9780387283197 

出版时间:2014

出版社:Springer,

分类号:金属学与金属工艺


摘要

This book provides readers with the fundamentals necessary for understanding thermal spray technology. Coverage includes in-depth discussions of various thermal spray processes, feedstock materials, particle-jet interactions, and associated yet very critical topics: diagnostics, current and emerging applications, surface science, and pre and post-treatment. This book will serve as an invaluable resource as a textbook for graduate courses in the field and as an exhaustive reference for professionals involved in thermal spray technology.

查看更多

目录

1 Introduction 1

1.1 Needs for Coatings 1

1.2 Thin Films vs. Thick Films 2

1.3 Thermal Spray Coating Concept 2

1.4 Description of Different Thermal Spray Coating Processes 4

1.5 History of Thermal Spray 7

1.6 Thermal Spray Applications 8

1.7 Overview of Book Content 13

References 14

2 Overview of Thermal Spray 17

2.1 Surface Treatments or Coatings 17

      2.1.1 Why Surface Treatment or Coatings 17

      2.1.2 Surface Treatments 18

      2.1.3 Coatings 19

2.2 Brief Descriptions of Thermal Spray Applications 25

2.3 Overview of Thermal Spray Processes 27

      2.3.1 Compressed Gas Expansion 28

      2.3.2 Combustion Spraying 28

      2.3.3 Electrical Discharge Plasma Spraying 28

2.4 Substrate Preparation 32

2.5 Energetic Gas Flow Generation 33

      2.5.1 Cold Spray 33

      2.5.2 Flame Spray 35

      2.5.3 High-Velocity Oxy-fuel Spraying 36

      2.5.4 Detonation Gun Spraying 38

      2.5.5 Direct Current Blown Arc Spraying or d.c. Plasma Spraying 39

      2.5.6 Vacuum Induction Plasma Spraying 40

      2.5.7 Wire Arc Spraying 42

      2.5.8 Plasma-Transferred Arc Deposition 43

2.6 Material Injection 44

      2.6.1 Powder Injection 44

      2.6.2 Wire, Rod, or Cord Injection 47

      2.6.3 Liquid Injection 50

2.7 Energetic Gas–Particle Interactions 51

      2.7.1 Momentum Transfer 51

      2.7.2 Heat Transfer 52

      2.7.3 Effect of the Surrounding Atmosphere 54

2.8 Coating Formation 57

      2.8.1 Coatings from Fully or Partially Melted Particles in Conventional Spraying 57

      2.8.2 Adhesion of Conventional Coatings 60

      2.8.3 Coatings Resulting from Solution or Suspension Spraying 63

      2.8.4 Residual Stresses 64

2.9 Control of Coating Formation 65

      2.9.1 Coating Temperature Control Before, During, and After Spraying 65

      2.9.2 Control of Other Spray Parameters 67

2.10 Summary and Conclusions 69

References 70

3 Fundamentals of Combustion and Thermal Plasma 73

3.1 Combustion 73

      3.1.1 Definitions 73

      3.1.2 Combustion at Equilibrium 74

      3.1.3 Combustion Kinetics 76

      3.1.4 Combustion or Deflagrations, Detonations 79

3.2 Thermal Plasmas Used for Spraying 84

      3.2.1 Definition 84

      3.2.2 Plasma Composition 85

      3.2.3 Thermodynamic Properties 88

      3.2.4 Transport Properties 89

3.3 Basic Concepts in Modeling 95

      3.3.1 Introduction 95

      3.3.2 Conservation Equations 95

      3.3.3 Gas Composition, Thermodynamic, and Transport Properties 104

3.4 Summary and Conclusions 106

References 110

4 Gas Flow–Particle Interaction 113

4.1 Introduction 113

4.2 Single Particle Trajectory 114

      4.2.1 Single Particle Motion 114

      4.2.2 Particle Injection and Trajectory 116

      4.2.3 Drag Coefficient: Micrometer Sized Single Sphere 128

      4.2.4 Drag Coefficient: Submicron and Nanometer-Sized Particles 138

4.3 In-Flight Single Particle Heat and Mass Transfer and Chemical Reactions 140

      4.3.1 Basic Conduction, Convection, and Radiation Heat Transfers 140

      4.3.2 In-Flight Particle Heating and Melting 142

      4.3.3 Heat Transfer to a Single Sphere 148

4.4 Ensemble of Particles and High-Energy Jet 176

      4.4.1 General Remarks 176

      4.4.2 Particle Injection 178

      4.4.3 Particles and Plasma Jet with No Loading Effect 187

      4.4.4 Loading Effect 191

4.5 Liquid or Suspension Injection into a Plasma Flow 195

      4.5.1 Liquid Injection 196

      4.5.2 Liquid Penetration into the Plasma Flow 202

      4.5.3 Liquid Fragmentation 203

      4.5.4 In-Flight Heat Transfer to Droplets 207

      4.5.5 Cooling of the Plasma Flow by the Liquid 208

      4.5.6 Influence of Arc Root Fluctuations 209

      4.5.7 Case of No Fragmentation 211

4.6 Summary and Conclusions 212

References 215

5 Combustion Spraying Systems 227

5.1 Historical Perspective and General Remarks 227

5.2 Flame Spraying 228

      5.2.1 Principle 228

      5.2.2 Powder Flame Spraying 229

      5.2.3 Liquid Flame Spraying 235

      5.2.4 Wire, Rod, or Cord Spraying 235

      5.2.5 Flame Modeling 238

5.3 High Velocity Flame Spraying (HVOF–HVAF) 239

      5.3.1 HVOF or HVAF Powder Spraying 239

      5.3.2 HVOF Wire Spraying 260

      5.3.3 Applications: General Remarks 262

      5.3.4 Coatings Sprayed with Combustible Gases and Oxygen 262

      5.3.5 Coatings Sprayed with Liquid Fuel and Oxygen 265

      5.3.6 HVOF–HVAF Modeling 266

5.4 Detonation Gun (D-Gun) 269

      5.4.1 Process Description 269

      5.4.2 In-Flight Particle Properties 275

      5.4.3 Graded Coatings 278

      5.4.4 Coating Properties 278

5.5 Summary and Conclusions 290

References 292

6 Cold Spray 305

6.1 Introduction to the Different Cold Spray Processes 305

      6.1.1 High-Pressure Cold Spray 305

      6.1.2 Low Pressure Cold Spray 309

      6.1.3 Vacuum Cold Spray 311

6.2 High-Pressure Cold Spray Process 312

      6.2.1 Process Gas Dynamics 312

      6.2.2 Coating Adhesion and Cohesion 326

      6.2.3 Deposition Parameters 342

6.3 Coating Materials and Applications 356

      6.3.1 General Remarks 356

      6.3.2 Metals 356

      6.3.3 Composites 363

      6.3.4 Ceramics 366

6.4 Low Pressure Cold Spray (LPCS) 369

      6.4.1 Coating Formation 369

      6.4.2 Examples of Coatings 370

6.5 Summary and Conclusions 372

References 374

7 D.C. Plasma Spraying 383

7.1 Description of Concept 383

7.2 Equipment and Operating Parameters 386

7.3 Fundamentals of Plasma Torch Design 388

      7.3.1 Torch Cathode 389

      7.3.2 Arc Column 391

      7.3.3 Torch Anode 393

      7.3.4 Arc Voltage and Power Dissipation 394

      7.3.5 Arc Stability 394

      7.3.6 Electrode Erosion 400

7.4 Particle Injection 403

7.5 Plasma Torch and Spray Process Modeling 408

7.6 Plasma Torch and Jet Characterization: Time Averaged 412

      7.6.1 Effect of Plasma Gas 413

      7.6.2 Effect of Plasma Gas Injector Design 416

      7.6.3 Effect of Anode Nozzle Design 418

      7.6.4 Effect of Surrounding Atmosphere 421

      7.6.5 Effect of Cathode Shape 421

      7.6.6 Effect of Standoff Distance 422

      7.6.7 Summary of Design and Operating Parameters 424

7.7 Plasma Jet Characterization: Transient Behavior 424

      7.7.1 Plasma Jet Instability 424

      7.7.2 Effect of Arc Voltage Fluctuations on Plasma Jet and Particle Characteristics 427

7.8 Different Plasma Torch Concepts 433

      7.8.1 Shrouds and Other Fluid Dynamic Jet Stabilization 433

      7.8.2 Fixed Anode Attachment Position 437

      7.8.3 Central Injection Torches 440

      7.8.4 Torches for Inside Diameter Coatings 443

      7.8.5 High-Power Plasma Spray Torch 444

      7.8.6 Water-Stabilized Plasma Torch 444

7.9 Low Pressure and Controlled Atmosphere Plasma Spraying 446

7.10 Plasma-Sprayed Materials and Coatings 454

      7.10.1 Oxide Materials 455

      7.10.2 Non-oxide Ceramics 460

      7.10.3 Cermets 462

      7.10.4 Metals or Alloys 463

7.11 Summary and Conclusions 465

References 467

8 R.F. Induction Plasma Spraying 479

8.1 Introduction 479

8.2 The r.f. Induction Plasma Torch 481

      8.2.1 Basic Concepts 481

      8.2.2 Energy Coupling Mechanism 483

      8.2.3 Induction Plasma Torch Design 490

      8.2.4 Temperature, Fluid Flow, and Concentration Fields 497

8.3 Modeling of the Inductively Coupled Plasma Discharge 509

      8.3.1 Basic Assumption 511

      8.3.2 Governing Equations 511

      8.3.3 Typical Results of Fluid Dynamic Modeling 521

8.4 Plasma–Particle Interaction Model 532

      8.4.1 Governing Equations 534

      8.4.2 Typical Result: Effect of Particle Loading 536

8.5 Vacuum Induction Plasma Spraying 549

      8.5.1 Basic Equipment Design 549

      8.5.2 Parametric Analysis and Operating Conditions 554

      8.5.3 Reactive Induction Plasma Spraying 562

      8.5.4 Suspension Induction Plasma Spraying 564

      8.5.5 Supersonic Induction Plasma Spraying 567

8.6 Summary and Conclusions 569

References 571

9 Wire Arc Spraying 577

9.1 Description of Concept 577

9.2 Equipment and Operating Parameters 579

9.3 Wire Materials and Specific Applications 582

      9.3.1 Wires 582

      9.3.2 Cored Wires 585

9.4 Metal Droplet Formation 587

9.5 Process Characterization 597

      9.5.1 Gas Velocity Measurements 599

      9.5.2 Metal Droplet Velocity Distributions 600

      9.5.3 Metal Droplet Temperature 607

      9.5.4 Coating Characteristics 608

      9.5.5 Fume Formation 612

9.6 Process Modeling 613

9.7 Single Wire Arc Spraying 618

9.8 Special Developments: Low-Pressure Wire Arc and 90 Angle Spraying 622

9.9 Summary and Conclusions 623

References 624

10 Plasma-Transferred Arc 631

10.1 Description of Concept 631

      10.1.1 Tungsten Inert Gas 633

      10.1.2 Metal Inert Gas 633

10.2 Equipment and Operating Parameters 634

10.3 Coating Materials and Applications 639

      10.3.1 Corrosion and Wear 639

      10.3.2 Self-Lubricating Coatings 641

      10.3.3 Rebuilding of Parts 642

      10.3.4 Free-Standing Shapes 642

10.4 Process Characterization 642

      10.4.1 Temperature Distributions in the Arc and Arc Voltages 643

      10.4.2 Heat Flux to the Substrate 646

      10.4.3 PTA Process Modeling 650

10.5 Effect of Process Parameter Changes on Coating Properties 652

10.6 Process Modifications and Adaptations 655

      10.6.1 Variation of Ratio of Pilot Arc Current to Transfer Arc Current 656

      10.6.2 Variation of Powder Feed 656

      10.6.3 Nitriding of Coating 656

      10.6.4 Modulation of Deposition Parameters 657

      10.6.5 High-Energy PTA 658

      10.6.6 PTA Combined with Tape Casting 660

      10.6.7 PTA Deposition with a Negative Work Piece Polarity 660

      10.6.8 Hard Coatings on Magnesium 661

10.7 Examples of Specific Applications 661

      10.7.1 Increasing Hardness 661

      10.7.2 Increasing Wear Resistance 662

      10.7.3 Abrasive Wear in Petrochemical, Mining, and Agricultural Applications 664

      10.7.4 Combined Corrosion and wear 665

      10.7.5 Refurbishing of Worn Parts 666

      10.7.6 Freestanding Shape Fabrication 666

10.8 Summary and Conclusions 667

References 669

11 Powders, Wires, Cords, and Rods 675

11.1 Powders 676

      11.1.1 Introduction 676

      11.1.2 Powders Manufacturing Techniques 678

      11.1.3 Examples of the Influence of Powder Morphologies on Coating Properties 716

      11.1.4 Conventional Particle Classification Method 719

      11.1.5 Characterization 722

      11.1.6 Powder Feeders 728

      11.1.7 Hazards Related to Particulate Materials 732

11.2 Wires 734

      11.2.1 Wire Materials 734

      11.2.2 Cored Wires 735

      11.2.3 Wire Feeders 736

11.3 Rods 736

11.4 Cords 736

11.5 Polymer Particles 737

      11.5.1 General Remarks 737

      11.5.2 Sprayed Polymer Powders 739

11.6 Summary and Conclusions 744

References 746

12 Surface Preparation 755

12.1 Introduction 755

12.2 Machining 755

12.3 Cleaning 757

      12.3.1 Vapor Degreasing 757

      12.3.2 Baking in an Oven 758

      12.3.3 Ultrasonic Cleaning 758

      12.3.4 Wet or Dry Blasting 758

      12.3.5 Acid Pickling 758

      12.3.6 Brushing 758

      12.3.7 Dry Ice Blasting 759

12.4 Masking 760

12.5 Roughening by Grit Blasting 761

      12.5.1 Roughness Measurement 761

      12.5.2 Grit-Blasting Equipment 766

      12.5.3 Grit-Blasting Nozzles 767

      12.5.4 Grit Material 768

      12.5.5 Blasting Parameters 771

      12.5.6 Grit Residues 776

      12.5.7 Grit Wear 781

      12.5.8 Residual Stress Induced by Grit Blasting 783

      12.5.9 Conclusion 784

12.6 High-Pressure Water Jet Roughening 786

      12.6.1 Equipment and Description of the Process 786

      12.6.2 Water Jet-Blasting Parameters 788

      12.6.3 Comparison Grit and Water Jet Blasting 792

12.7 Abrasive Water Jetting 793

12.8 Laser Treatment: Protal® Process 793

      12.8.1 Laser Ablation 793

      12.8.2 Protal® Experimental Setup 795

      12.8.3 Example of Results 796

12.9 Summary and Conclusions 799

References 801

13 Conventional Coating Formation 807

13.1 Introduction 807

13.2 Spray Parameters 810

13.3 Physical and Chemical Description of Substrates 812

      13.3.1 Physical Aspect of Substrate Surfaces 813

      13.3.2 Oxide Layer Development on Metals or Alloys 816

13.4 Single Particle Impact, Flattening, and Solidification (When Melted) 820

      13.4.1 Introduction 820

      13.4.2 Different Possibilities of Particle or Splat–Substrate Adhesion 822

      13.4.3 Splat Formation from Unmelted Particles Impacting on Smooth Substrates 832

      13.4.4 Splat Formation from Molten Particles Impacting onto Smooth Substrates 839

      13.4.5 Splat Formation from Partially Molten Particles on Smooth Substrates 863

      13.4.6 Splat Formation from Unmelted Particles Off Normal on Smooth Substrates 866

      13.4.7 Flattening and Solidification of Molten Particle on a Smooth Substrate 866

13.5 Splat Formation on Rough Surfaces 868

      13.5.1 Solid Ductile Particles 868

      13.5.2 Molten Metal, Alloy, Ceramic, and Cermet Particles 869

      13.5.3 Polymer Particles 873

13.6 Coating Formation 874

      13.6.1 Molten Particles Deposited by Thermal Spraying 874

      13.6.2 Polymer Coatings 887

      13.6.3 Ductile Particles 892

      13.6.4 PTA Coatings 896

      13.6.5 Coatings Obtained by Very Low Pressure Plasma Spray 897

      13.6.6 Use of Robot Manipulators 900

      13.6.7 Coating Structure Modeling 902

13.7 Temperature Control of Substrate and Coating in Thermal Spraying 903

      13.7.1 Introduction 903

      13.7.2 Splat Cooling 905

      13.7.3 Cooling Methods 908

      13.7.4 Coating Mean Temperature Control 913

13.8 Influence of Powder Manufacturing Process on Coating Properties 915

      13.8.1 Chemical Reactions 915

      13.8.2 Particle Morphology 917

      13.8.3 Nanostructured Agglomerated Particles 919

13.9 Influence of Wire, Cored Wires, Rods, and Cords on Coating Properties 920

      13.9.1 Flame or HVOF or HVAF-Sprayed Wires 920

      13.9.2 Flame-Sprayed Rods 922

      13.9.3 Arc Sprayed 922

13.10 Stresses Within Coatings 924

      13.10.1 Residual Stress 924

      13.10.2 Service Stresses 937

      13.10.3 Conclusions Relative to Residual Stresses 941

13.11 Finishing Coatings 941

      13.11.1 Machining (Turning, Milling) 941

      13.11.2 Grinding 941

      13.11.3 Abrasive Belt Grinding and Polishing 942

      13.11.4 Other Finishing Methods 943

13.12 Post Treatment of Coatings 943

      13.12.1 Fusion of Self-Fluxing Alloys 944

      13.12.2 Heat Treating or Annealing 946

      13.12.3 Hot Isostatic Pressing 948

      13.12.4 Austempering Heat Treatment 949

      13.12.5 Laser Glazing 949

      13.12.6 Sealing 952

      13.12.7 Spark Plasma Sintering 956

      13.12.8 Peening or Rolling Densification 957

      13.12.9 Diffusion 958

13.13 Summary and Conclusions 958

References 962

14 Nanostructured or Finely Structured Coatings 981

14.1 Introduction 982

      14.1.1 Why Nanostructured Coatings 982

      14.1.2 How to Spray Nanostructure Coatings? 985

14.2 Spraying of Complex Alloys Containing Multiple Elements to Form Amorphous Coatings 987

      14.2.1 Amorphous Alloys Containing Phosphorus 987

      14.2.2 NiCrB and FeCrB Alloys 988

      14.2.3 Iron-Based Amorphous Alloys 989

14.3 Agglomerated Ceramic Particles Spraying with Hot Gases 993

      14.3.1 Spray Conditions 993

      14.3.2 Applications 1004

14.4 Attrition or Ball Milled Cermets or Alloy Particles Sprayed with Hot Gases 1013

      14.4.1 Alloys 1014

      14.4.2 Cermets 1015

14.5 Spraying Hypereutectic Alloys with Hot Gases 1017

14.6 Production of Nanostructured Coatings by Cold Spray 1019

      14.6.1 Alloys 1019

      14.6.2 Composites 1020

      14.6.3 Amorphous Alloys 1022

14.7 Solutions or Suspensions Spraying 1023

      14.7.1 Sub-Micrometer and Nanometer-Sized Particles in Plasma or HVOF Jets 1024

      14.7.2 Liquid Injection 1030

      14.7.3 Spray Torches Used 1037

      14.7.4 Solutions or Suspensions Preparation 1040

      14.7.5 Liquid Stream: Hot Flow Interactions 1045

      14.7.6 Coating Manufacturing Mechanisms 1056

      14.7.7 Applications 1083

14.8 Summary and Conclusions 1093

References 1096

15 Coating Characterizations 1113

15.1 Introduction to Coating Characterizations and Testing Methods 1115

      15.1.1 Differences Between Coatings and Bulk Materials 1115

      15.1.2 Characterization and Testing Methods Used for Coatings 1116

      15.1.3 Statistical Methods 1117

15.2 Nondestructive Methods 1121

      15.2.1 Visual Inspection 1121

      15.2.2 Laser Inspection 1122

      15.2.3 Coordinate Measuring Machines 1122

      15.2.4 Machine Vision and Robotic Evaluation 1122

      15.2.5 Acoustic Emission 1123

      15.2.6 Laser-Ultrasonic Techniques 1123

      15.2.7 Thermography 1124

      15.2.8 Coating Thickness 1125

15.3 Metallography and Image Analysis 1125

      15.3.1 Coating Preparation 1126

      15.3.2 Microscopy 1131

15.4 Materials Characterization 1137

      15.4.1 X-Ray Spectroscopy or X-Ray Fluorescence 1138

      15.4.2 Infrared Spectroscopy 1138

      15.4.3 Mo¨ssbauer Spectroscopy 1139

      15.4.4 X-Ray Diffraction 1139

      15.4.5 Small- and Ultrasmall-Angle X-Ray Diffraction (USAXF) 1141

      15.4.6 Neutron Scattering 1143

      15.4.7 X-Ray Absorption Spectroscopy 1145

      15.4.8 Electron Probe X-Ray Microanalysis 1146

      15.4.9 Auger Electron Spectroscopy 1146

      15.4.10 X-Ray Photoelectron Spectroscopy 1146

      15.4.11 Other Techniques 1147

15.5 Void Content and Network Architecture 1147

      15.5.1 Archimedean Porosimetry 1149

      15.5.2 Mercury Intrusion Porosimetry (MIP) 1150

      15.5.3 Gas Permeation and Pycnometry 1150

      15.5.4 Small-Angle Neutrons Scattering 1152

      15.5.5 Ultrasmall-Angle X-Ray Scattering 1153

      15.5.6 Stereological Protocols (Coupled to Image Analysis) (ST) 1155

      15.5.7 Electrochemical Impedance Spectroscopy 1160

15.6 Adhesion–Cohesion 1161

      15.6.1 Introduction 1161

      15.6.2 Simple Adhesion Tensile Test 1162

      15.6.3 Other Types of Tensile Tests 1164

      15.6.4 Shear Stress 1166

      15.6.5 Fracture Mechanics Approach 1167

      15.6.6 Bending Test: Adhesion and Interface Toughness Measurements 1169

      15.6.7 Indentation: Interface Toughness Measurement 1171

      15.6.8 Other Methods 1173

15.7 Mechanical Properties 1177

      15.7.1 Hardness and Indentation Test 1177

      15.7.2 Young’s Modulus 1184

      15.7.3 Toughness 1186

      15.7.4 Residual Stress 1187

15.8 Thermal Properties 1193

      15.8.1 Mass Density 1193

      15.8.2 Expansion Coefficient 1194

      15.8.3 Thermal Conductivity and Thermal Diffusivity 1194

      15.8.4 Specific Heat at Constant Pressure 1196

      15.8.5 Thermal Shock Resistance 1197

      15.8.6 Differential Thermal Analysis, Thermogravimetry, and Differential Scanning Calorimetry 1199

15.9 Wear Resistance 1203

      15.9.1 Abrasive Wears 1203

      15.9.2 Adhesive Wears 1204

      15.9.3 Erosive Wear 1206

      15.9.4 Surface Fatigue 1209

      15.9.5 Corrosive Wears 1213

      15.9.6 Fretting 1217

15.10 Corrosion Resistance 1218

      15.10.1 General Remarks 1218

      15.10.2 Corrosion Characterization 1222

15.11 Summary and Conclusions 1225

References 1235

16 Process Diagnostics and Online Monitoring and Control 1251

16.1 Introduction 1252

      16.1.1 What Is Expected from Thermal-Sprayed Coatings? 1252

      16.1.2 Coatings Repeatability, Reliability, and Reproducibility 1252

      16.1.3 How Sprayed Coatings Quality Was Improved Through the Spray Process Monitoring 1255

      16.1.4 Spray Process Parameters That Should Be Controlled 1257

16.2 High-Energy Jets Characterization 1258

      16.2.1 Plasma Jets 1259

      16.2.2 Flames and Cold Spray 1266

16.3 Sensors 1269

      16.3.1 Hot Gases Flow: Enthalpy Probe 1270

      16.3.2 Particles In-Flight Distribution 1274

      16.3.3 In-Flight Hot Particle Temperature and Velocity Measurement 1284

      16.3.4 In-Flight Velocity Measurements of Cold Particles 1303

      16.3.5 Are Such Measurements Sufficient to Monitor Coating Properties? 1306

      16.3.6 Coating Under Formation 1308

16.4 Online Control or Monitoring? 1311

      16.4.1 Coating Properties Monitoring 1311

      16.4.2 Online Control? 1320

16.5 Other Possible Measurements 1320

      16.5.1 Particle Vaporization 1320

      16.5.2 Splat Formation 1321

      16.5.3 Plasma-Liquid Injection 1328

16.6 Summary and Conclusions 1333

References 1337

17 Process Integration 1351

17.1 Introduction 1352

17.2 Potential and Real Risks 1352

      17.2.1 Powders: Respiratory Problems and Explosions 1353

      17.2.2 Gases 1355

      17.2.3 Prevention and Safety Measures 1357

      17.2.4 Other Risks 1359

17.3 Ancillary Equipment 1362

      17.3.1 The Spray Booth 1362

      17.3.2 Exhaust Systems 1365

      17.3.3 Power Supply 1365

      17.3.4 Gas Supply 1366

      17.3.5 Compressed Air Supply 1366

      17.3.6 Cooling Water 1366

      17.3.7 Micrometer-Sized Powder Feeders and Solutions or Suspensions Feeders 1367

      17.3.8 Gun Movements 1368

      17.3.9 Control Panel 1368

17.4 Controlled Atmosphere 1368

      17.4.1 Soft Vacuum Plasma Spraying 1368

      17.4.2 Vapor Phase Deposition 1373

      17.4.3 Inert Plasma Spraying 1374

      17.4.4 Cold Spray with Helium 1375

17.5 Finishing and Post-Treatment of Coatings 1375

      17.5.1 Finishing 1376

      17.5.2 Fusion of Self-Fluxing Alloys 1378

      17.5.3 Heat Treating or Annealing 1381

      17.5.4 Hot Isostatic Pressing 1383

      17.5.5 Austempering Heat Treatment 1384

      17.5.6 Laser Glazing 1384

      17.5.7 Sealing 1387

      17.5.8 Spark Plasma Sintering 1392

      17.5.9 Peening or Rolling Densification 1392

      17.5.10 Diffusion 1393

17.6 Summary and Conclusions 1393

References 1394

18 Industrial Applications of Thermal Spraying Technology 1401

18.1 Introduction 1403

18.2 Advantages and Limitations of the Different Spray Processes 1404

      18.2.1 Flame Spraying 1404

      18.2.2 D-Gun Spraying 1406

      18.2.3 HVOF–HVAF Spraying 1406

      18.2.4 Wire Arc Spraying 1407

      18.2.5 Plasma Spraying 1407

      18.2.6 Plasma-Transferred Arcs (PTA) 1409

      18.2.7 Plasma Transferred Arc 1410

      18.2.8 Cold Spray 1411

18.3 Thermal-Sprayed Coating Applications 1411

18.3.1 Wear Resistant Coatings 1412

18.3.2 Corrosion and Oxidation Resistant Coating 1433

18.3.3 Thermal Protection Coatings 1446

18.3.4 Clearance Control Coatings 1455

18.3.5 Bonding Coatings 1457

18.3.6 Electrical and Electronic Coatings 1458

18.3.7 Freestanding Spray-Formed Parts 1462

18.3.8 Medical Applications 1466

18.3.9 Replacement of Hard Chromium 1469

18.3.10 Applications Under Developments 1471

18.4 Thermal-Sprayed Coatings by Industry 1474

      18.4.1 Aerospace 1475

      18.4.2 Land-Based Turbines 1478

      18.4.3 Automotive 1478

      18.4.4 Electrical and Electronic Industries 1481

      18.4.5 Corrosion Applications for Land-Based and Marine Applications 1483

      18.4.6 Medical Applications 1486

      18.4.7 Ceramic and Glass Manufacturing 1487

      18.4.8 Printing Industry 1488

      18.4.9 Pulp and Paper 1490

      18.4.10 Metal Processing Industries 1492

      18.4.11 Petroleum and Chemical Industries 1495

      18.4.12 Electrical Utilities 1498

      18.4.13 Textile and Plastic Industries 1499

      18.4.14 Polymers 1499

      18.4.15 Reclamation 1501

      18.4.16 Other Applications 1503

      18.4.17 Thermal-Sprayed Coatings in the Different Countries 1505

18.5 Economic Analysis of the Different Spray Processes 1513

      18.5.1 Different Cost Contribution Factors 1513

      18.5.2 Direct Cost Factors 1514

      18.5.3 Indirect or Fixed Cost Factors 1521

      18.5.4 Few Examples 1522

18.6 Summary and Conclusions 1529

References 1545

查看更多

作者简介

Pierre L. Fauchais is Professor Emeritus at the University of Limoges. Joachim V.R. Heberlein is Professor Emeritus at the University of Minnesota. Maher I. Boulos is Professor Emeritus at the University of Sherbrooke and President and CEO Tekna Plasma System Inc. All three authors are part of the Thermal Spray Hall of Fame.

查看更多

馆藏单位

中科院文献情报中心