外文科技图书简介
当前位置:首页 > 检索结果 >文献详细内容

书名:Chemistry of the climate system

责任者:Detlev Mller.

ISBN\ISSN:9783110330809,3110330806 

出版时间:2014

出版社:de Gruyter,

分类号:天文学、地球科学

版次:2nd fully revised and extended edition.


摘要

Climate change is a major challenge facing the modern world. The chemistry of air and it's influence on the climate system forms the main focus of this monograph. The book presents a problem-based approach to presenting global atmospheric processes, evaluating the effects of changing air composition as well as possibilities for interference within these processes and indicates ways for solving the problem of climate change through chemistry. The new edition includes innovations and latest research results.
A chemical approach to global climate change: including 2 new chapters on chemical climatology and an extended discussion of atmospheric trace species.
For environmental scientists in atmospheric chemistry, meteorology, geology, and ecology.

查看更多

目录

1 Introduction 1

1.1 Air and atmosphere − a multiphase and multi-component system 1

1.2 Chemistry and environmental research 6

1.3 A historical perspective of air, water and chemistry 12

      1.3.1 From Antiquity to the Renaissance: Before the discovery of the air composition 13

      1.3.2 Discovery of the composition of air and water 16

      1.3.3 Discovery of trace substances in air 21

      1.3.4 Dust and acid rain: Air pollution 23

2 Chemical evolution 27

2.1 The pre-biological period 29

      2.1.1 Origin of elements, molecules and the earth 29

      2.1.2 Origin of organic bonded carbon 38

      2.1.2.1 What is organic chemistry? 39

      2.1.2.2 Origin of carbon 40

      2.1.3 Origin of nitrogen 46

2.2 Evolution of the atmosphere 49

      2.2.1 Degassing of the earth: The formation of the atmosphere 49

      2.2.1.1 Volcanic gases 50

      2.2.1.2 Gases occluded and produced from rocks 52

      2.2.1.3 The pre-biological primitive atmosphere 57

      2.2.2 Biosphere-atmosphere interaction 63

      2.2.2.1 Origin of life 63

      2.2.2.2 The rise of oxygen and ozone: Biogeochemical evolution 67

      2.2.2.3 Photosynthesis: Non-equilibrium redox processes 74

      2.2.2.4 A short history of understanding the process of photosynthesis 81

      2.2.2.5 The carbon and oxygen pools and global cycling 85

      2.2.2.6 Life limits by catastrophic events: Mass extinctions 93

2.3 The earth’s energy sources 94

      2.3.1 Solar radiation 95

      2.3.1.1 The sun and its radiation output 95

      2.3.1.2 Solar radiation transfer through the atmosphere 96

      2.3.2 Absorption and emission of light 102

      2.3.2.1 Absorption (Lambert-Beer law) 103

      2.3.2.2 Emission (Planck’s law and Stefan-Boltzmann’s law) 104

      2.3.3 Terrestrial radiation and radiation budget 106

      2.3.4 Geothermal energy 108

      2.3.5 Renewable energy 110

      2.3.5.1 Wind energy 110

      2.3.5.2 Water energy 111

      2.3.5.3 Bioenergy 111

      2.3.5.4 Comparison among earth’s energy sources − potential for humans 114

      2.3.6 Abiogenic versus biogenic formation of “fossil fuels” 116

      2.3.7 The energy problem 117

2.4 The biosphere and global biogeochemical cycles 118

      2.4.1 Biosphere and the noosphere 119

      2.4.2 Biogeochemical cycling: The principles 124

      2.4.3 Global biogeochemical cycles 128

      2.4.3.1 Nitrogen 129

      2.4.3.2 Sulfur 134

      2.4.3.3 Chlorine 138

      2.4.4 What is the role of life in the earth’s climate system? 143

2.5 The hydrosphere and the global water cycle 146

      2.5.1 Water: Physical and chemical properties 148

      2.5.1.1 Water structure: Hydrogen bond 148

      2.5.1.2 Water as solvent 151

      2.5.1.3 Water properties in relation to the climate system 152

      2.5.2 Hydrological cycle and the climate system 154

      2.5.3 Atmospheric water 157

      2.5.3.1 Water vapor 158

      2.5.3.2 Clouds 160

      2.5.3.3 Haze, mist and fog 163

      2.5.3.4 Precipitation 164

      2.5.4 Dew, frost, rime, and interception 167

      2.5.5 Soil water and groundwater: Chemical weathering 169

      2.5.6 Surface water: Rivers and lakes 170

      2.5.7 The oceans 171

2.6 Sources of atmospheric constituents 173

      2.6.1 Source characteristics 173

      2.6.2 Biogenic sources 175

      2.6.2.1 Vegetation and microorganisms (soils and waters) 175

      2.6.2.2 Animals 178

      2.6.3 The ocean as source 179

      2.6.4 Geogenic sources 182

      2.6.4.1 Soil dust 183

      2.6.4.2 Sea salt 185

      2.6.4.3 Volcanism and emanation 186

      2.6.4.4 Lightning 192

      2.6.4.5 Biomass burning 193

      2.6.4.6 Atmospheric chemistry: Secondary sources 199

      2.6.5 Anthropogenic sources 202

      2.6.5.1 Fossil fuel use: The energy problem 203

      2.6.5.2 Agriculture: The food problem 210

      2.6.5.3 Land-use change and deforestation: The population problem 213

2.7 Emission of atmospheric substances 217

      2.7.1 Nitrogen compounds 221

      2.7.1.1 Ammonia (NH3) 221

      2.7.1.2 Dinitrogen monoxide (N2O) 224

      2.7.1.3 Nitrogen monoxide (NO) 225

      2.7.2 Sulfur compounds 227

      2.7.2.1 Sulfur dioxide (SO2) 227

      2.7.2.2 Reduced sulfur compounds (H2S, DMS, COS) 230

      2.7.3 Carbon compounds 233

      2.7.3.1 Carbon dioxide (CO2) 233

      2.7.3.2 Carbon monoxide (CO) 235

      2.7.3.3 Methane (CH4) 236

      2.7.3.4 Non-methane volatile organic compounds (NMVOC) 238

2.8 The human problem: A changing earth system 242

      2.8.1 Human historic perspective: From the past into the future 244

      2.8.2 Changing the chemical composition of the atmosphere: Variations and trends 250

      2.8.2.1 Fundamentals: Why concentration fluctuates? 252

      2.8.2.2 SO2, NO2 and dust: Classic for local to regional up-scaling 255

      2.8.2.3 CO2: The fossil fuel era challenge 259

      2.8.2.4 CH4 and N2O: Permanent agricultural associates 276

      2.8.2.5 Halogenated organic compounds: Sit out problem 280

      2.8.2.6 CO: The biomass burning problem 283

      2.8.2.7 O3: Locally believed to be solved but regional unsolved 284

      2.8.2.8 H2O2: Mysterious 294

      2.8.2.9 OH: The key oxidant 297

      2.8.2.10 H2: Light but problematic 299

      2.8.2.11 Volatile acid and OH precursor: HNO2 301

      2.8.2.12 Sea salt degassing: HCl and the role of HNO3 308

      2.8.3 The carbon problem: Out of balance 310

      2.8.3.1 The carbon budget 311

      2.8.3.2 The CO2-carbonate system 316

      2.8.3.3 Atmospheric CO2 residence time 326

      2.8.4 Climate change mitigation: Global sustainable chemistry 328

      2.8.4.1 Growth and steady state economy 330

      2.8.4.2 Direct air capture 333

      2.8.4.3 The carbon economy: CO2 cycling 335

      2.8.4.4 Solar fuels: Carbon as a material and energy carrier 341

3 Climate, climate change and the climate system 347

3.1 Climate and climatology: A historical perspective 349

3.2 Climate and the climate system 354

3.3 Climate change and variability 357

3.4 Climate and chemistry 369

      3.4.1 Chemical weather and climate 369

      3.4.2 Precipitation chemistry climatology 372

      3.4.3 Cloud chemistry climatology 380

4 Fundamentals of physico-chemistry in the climate system 393

4.1 Physical basics 394

      4.1.1 Properties of gases: The ideal gas 395

      4.1.1.1 Fluid characteristics 395

      4.1.1.2 The gas laws 396

      4.1.1.3 Mean free path and number of collisions between molecules 400

      4.1.1.4 Viscosity 403

      4.1.1.5 Diffusion 404

      4.1.2 Units for chemical abundance: Concentrations and mixing ratios 405

      4.1.3 Thermodynamics: The equations of state 409

      4.1.4 Equilibrium 414

      4.1.5 Steady state 416

4.2 Chemical reactions 419

      4.2.1 Kinetics: The reaction rate constant 420

      4.2.2 Radicals 427

      4.2.3 Photochemistry: The photolysis rate constant 428

      4.2.4 Oxidation and reduction (the redox processes) 433

      4.2.5 Acid−base reactions: Acidity and alkalinity 438

      4.2.5.1 Environmental relevance of acidity 438

      4.2.5.2 Acid−base theories 439

      4.2.5.3 Atmospheric acidity 443

      4.2.5.4 pH averaging 449

4.3 Multiphase processes 450

      4.3.1 Aerosols, clouds and precipitation: The climate multiphase system 453

      4.3.2 Gas-liquid equilibrium (Henry equilibrium) 455

      4.3.3 Properties of droplets 457

      4.3.3.1 Vapor pressure change: The Kelvin equation 458

      4.3.3.2 Surface tension and surface active substances 460

      4.3.3.3 Vapor pressure lowering: Raoult’s law 461

      4.3.3.4 Freezing point depression 463

      4.3.4 Gas-to-particle formation: Homogeneous nucleation 464

      4.3.5 Atmospheric aerosols and properties of aerosol particles 469

      4.3.6 Formation of cloud droplets: Heterogeneous nucleation 476

      4.3.7 Scavenging: Accommodation, adsorption and reaction (mass transfer) 477

      4.3.7.1 Mass transfer: General remarks 477

      4.3.7.2 Adsorption 483

      4.3.7.3 Surface chemistry: Kinetics of heterogeneous chemical reaction 484

      4.3.7.4 Mass transfer into the droplet with chemical reaction 486

4.4 Atmospheric removal: Deposition processes 490

      4.4.1 Dry deposition 491

      4.4.2 Wet deposition 497

4.5 Characteristic times: Residence time, lifetime and turnover time 499

5 Substances and chemical reactions in the climate system 507

5.1 Introduction 507

      5.1.1 The principles of chemistry in the climate system 507

      5.1.2 Substances in the climate system 510

5.2 Hydrogen 513

5.3 Oxygen 514

      5.3.1 Atomic, molecular oxygen and ozone: O, O2 and O3 (Ox) 516

      5.3.2 Reactive oxygen species I: OH, HO2 and H2O2 (OxHy species) 519

      5.3.2.1 Atmosphere, free of trace species 519

      5.3.2.2 Atmosphere with trace species 522

      5.3.3 Reactive oxygen species II: RO, RO2 and ROOH 526

      5.3.4 Water and the hydrated electron: H2O and H2O− (eaq−) 529

      5.3.5 Aqueous phase oxygen chemistry 539

      5.3.5.1 From dioxygen to peroxide (O2 chemistry) 540

      5.3.5.2 From ozone to hydroxyl (O3 and O1 chemistry) 547

      5.3.6 Multiphase oxygen chemistry 552

      5.3.6.1 Historical remarks 553

      5.3.6.2 Hydrogen peroxide 555

      5.3.6.3 Ozone 558

      5.3.7 Stratospheric oxygen chemistry 560

5.4 Nitrogen 564

      5.4.1 Thermolysis of nitrogen: Formation of NO 565

      5.4.2 Ammonia (NH3) 566

      5.4.3 Dinitrogen monoxide (N2O) 567

      5.4.4 Nitrogen monoxide (NO), nitrogen dioxide (NO2) and oxo acids 568

      5.4.4.1 Gas phase chemistry 568

      5.4.4.2 Aqueous phase and interfacial chemistry 572

      5.4.5 Organic nitrogen compounds 585

      5.4.5.1 Amines and nitriles 586

      5.4.5.2 Organic NOx compounds 589

5.5 Sulfur 590

      5.5.1 Sulfides (H2S, CS2, COS, RSH): Reduced sulfur 592

      5.5.2 Oxides and oxoacids: SO2, H2SO3, SO3, H2SO4 597

      5.5.2.1 Gas phase SO2 oxidation 597

      5.5.2.2 Aqueous sulfur chemistry 598

      5.5.3 Multiphase sulfur chemistry 605

5.6 Phosphorus 607

5.7 Carbon 610

      5.7.1 Elemental carbon and soot 611

      5.7.2 C1 chemistry: CO, CO2, CH4, CH3OH, HCHO, HCOOH 613

      5.7.3 C2 chemistry: C2H2, C2H4, C2H6, C2H5OH, CH3CHO, CH3COOH, (COOH)2 618

      5.7.4 Alkenes, ketones and aromatic compounds 624

      5.7.5 Is the atmospheric fate of complex organic compounds predictable? 626

5.8 Halogens (Cl, Br, F and I) 627

      5.8.1 Gas phase chemistry 629

      5.8.2 Aqueous and interfacial chemistry 631

5.9 Other elements 635

6 Final remark 637

Appendix 641

A.1 List of acronyms and abbreviations found in literature 641

A.2 Quantities, units and some useful numerical values 643

A.3 The geological timescale 650

A.4 Biography 651

References 663

Author index 755

Subject index 759

查看更多

作者简介

Detlev M. Möller, Brandenburg Technical University, Cottbus, Germany.

查看更多

馆藏单位

中科院文献情报中心