外文科技图书简介
当前位置:首页 > 检索结果 >文献详细内容

书名:Multistage separation processes

责任者:Fouad M. Khoury.

ISBN\ISSN:9781482230543 

出版时间:2015

出版社:Taylor & Francis,

分类号:化学工业

版次:Fourth edition.


摘要

The latest edition of a perennial bestseller, Multistage Separation Processes, Fourth Edition provides a clear and thorough presentation of the theoretical foundation, and understanding of the development, evaluation, design, and optimization steps of these processes, from both an academic and industrial perspective. The book’s emphasis on starting with theoretical models and their role in computer simulation, followed by practical applications, sets it apart from other texts on this topic. The author also highlights the importance of relating fundamental concepts to intuitive understanding of the processes.

查看更多

目录

Preface xvii

Author xxi

Chapter 1 Thermodynamics and Phase Equilibria 1

1.1 Thermodynamic Fundamentals 1

      1.1.1 Laws of Thermodynamics 2

      1.1.1.1 Carnot Engine 2

      1.1.1.2 Entropy 4

      1.1.2 Thermodynamic Functions 5

      1.1.3 Conditions for Equilibrium 7

1.2 PVT Behavior of Fluids 9

      1.2.1 Ideal Gas 10

      1.2.2 Real Fluids 11

      1.2.2.1 Qualitative PVT Behavior of Pure Substances 11

      1.2.3 Principle of Corresponding States 12

      1.2.4 Equations of State 14

      1.2.4.1 van der Waals Equation 14

      1.2.4.2 Virial Equation 14

      1.2.4.3 Redlich–Kwong Equation 15

      1.2.4.4 Soave Equation 16

      1.2.4.5 Peng–Robinson Equation 18

      1.2.4.6 Benedict–Webb–Rubin (BWR) Equation 19

      1.2.4.7 Lee–Kesler–Plocker Equation 19

1.3 Phase Equilibria 21

      1.3.1 Fugacity 21

      1.3.1.1 Pure Substances 23

      1.3.1.2 Mixtures 24

      1.3.1.3 Application to Equations of State 25

      1.3.2 Phase Equilibrium in an Ideal System 29

      1.3.2.1 Raoult’s Law 30

      1.3.2.2 Binary Ideal Solutions 30

      1.3.2.3 Henry’s Law 31

      1.3.3 Phase Equilibrium in Non-Ideal Systems 32

      1.3.3.1 Activity Coefficients 32

      1.3.3.2 Thermodynamic Consistency of VLE Data 35

      1.3.3.3 Margules Equation 36

      1.3.3.4 van Laar Equation 37

      1.3.3.5 Wilson Equation 38

      1.3.3.6 Non-Random Two-Liquid (NRTL) (Renon) Equation 39

      1.3.3.7 Universal Quasi-Chemical (UNIQUAC) Equation 39

      1.3.4 Vapor–Liquid Equilibria: Applications 43

      1.3.4.1 Azeotropes 48

      1.3.5 Liquid–Liquid and Vapor–Liquid–Liquid Equilibria 52

      1.3.5.1 Binary Systems 52

      1.3.5.2 Ternary Systems 53

1.4 Enthalpy 54

      1.4.1 Enthalpy Balances Involving Phase Change 59

1.5 Characterizing Petroleum Fractions 60

      1.5.1 True Boiling Point (TBP) 61

      1.5.2 Generating Pseudocomponents 61

      1.5.3 Laboratory Data 63

      1.5.4 Pseudocomponent Properties 63

      1.5.5 Blending Streams 64

Nomenclature 66

Subscripts 66

Superscripts 66

Problems 66

References 72

Chapter 2 The Equilibrium Stage 73

2.1 Phase Behavior 74

      2.1.1 Degrees of Freedom 74

      2.1.2 Phase Diagrams 75

      2.1.2.1 The Phase Envelope 75

      2.1.2.2 T–Z Diagram 77

      2.1.2.3 Y–X Diagram 78

      2.1.3 Distribution Coefficients 79

      2.1.4 Flash Operations 80

      2.1.4.1 Isothermal Flash 81

      2.1.4.2 Adiabatic Flash 81

      2.1.4.3 Bubble Point 81

      2.1.4.4 Dew Point 82

      2.1.4.5 General-Type Flash 82

2.2 Performance of the Equilibrium Stage 82

      2.2.1 Single-Feed Systems 83

      2.2.2 Single-Stage Absorption/Stripping 87

      2.2.3 Close Boilers and Azeotropes 88

2.3 Solution Methods 91

      2.3.1 Isothermal Flash Method 93

      2.3.1.1 Basic Algorithm 93

      2.3.1.2 Extension to General Flash Calculations 96

      2.3.2 Phase Boundary Calculations 106

      2.3.2.1 Bubble Point–Dew Point Calculations for Composition-Independent K-Values 107

      2.3.2.2 Iterative Method for Composition-Dependent K-Values 110

      2.3.2.3 Simultaneous Method 110

      2.3.2.4 Bubble Point Temperature 112

      2.3.2.5 Dew Point Temperature 113

      2.3.3 Liquid–Liquid and Vapor–Liquid–Liquid Equilibria 114

      2.3.3.1 Rigorous VLLE Model 117

      2.3.3.2 K-Value Computations 117

      2.3.3.3 Application to an Equilibrium Stage 119

      2.3.3.4 Iterative Solution 121

      2.3.3.5 VLLE in Hydrocarbon–Water Systems 122

Nomenclature 126

Subscripts 127

Superscripts 127

Problems 127

References 136

Chapter 3 Fundamentals of Multistage Separation 137

3.1 Cascaded Stages 138

      3.1.1 Graphical Representation 138

      3.1.2 Equilibrium Relationships 139

      3.1.3 Parameter Relationships 141

3.2 Distillation Basics 147

      3.2.1 Temperature Effect on Separation 148

      3.2.2 Mathematical Representation 148

      3.2.3 Parameter Relationships 149

3.3 Absorption/Stripping Basics 154

      3.3.1 Ternary Systems 154

      3.3.2 Multistage Absorption 158

      3.3.3 Operating Parameters and Mathematical Formulation 159

Nomenclature 160

Subscripts 161

Superscripts 161

Problems 161

Chapter 4 Material Balances in Multi-Component Separation 165

4.1 Mathematical Model 165

4.2 Types of Column Specifications 166

      4.2.1 Primary Variable Specifications 166

      4.2.2 Derived Variable Specifications 170

      4.2.3 General Specifications 173

Nomenclature 177

Subscripts 177

Superscripts 177

Problems 177

Chapter 5 Binary Distillation: Principles 181

5.1 Column Section 181

      5.1.1 Development of the Model 182

      5.1.1.1 Assumptions and Simplifications 184

      5.1.2 Analytical Solution 186

      5.1.3 Graphical Representation on the Y–X Diagram 186

      5.1.3.1 Constructing Equilibrium Stages 188

5.2 Total Column 189

      5.2.1 Mathematical Model 190

      5.2.1.1 Rectifying Section Operating Line 191

      5.2.1.2 Stripping Section Operating Line 191

      5.2.1.3 Feed Stage 191

      5.2.1.4 Analytical Solution 193

      5.2.1.5 The Description Rule 194

      5.2.2 Graphical Solution on the Y–X Diagram 195

      5.2.2.1 Representing a Total Column 197

      5.2.2.2 Separation and Reflux Ratio Specified 198

      5.2.2.3 Distillate Composition, Reflux Ratio, and Number of Stages Specified 199

      5.2.2.4 Separation and Number of Stages Specified 199

      5.2.2.5 Reflux Ratio, Product Rates, and Number of Stages Specified 199

      5.2.2.6 Columns with Multiple Feeds, Side Draws, and Side Heaters/Coolers 199

      5.2.2.7 Columns with Stripping Vapor Feed 203

      5.2.3 Tray Efficiency 203

5.3 Column Solution with Material and Enthalpy Balances 204

      5.3.1 Single-Stage Mass and Energy Balances 205

      5.3.2 Binary H–X Diagrams 206

      5.3.3 Solving Distillation Columns on the H–X Diagram 207

      5.3.4 Other Column Features Represented on the H–X Diagram 211

      5.3.4.1 Condenser Types 211

      5.3.4.2 Multiple Feeds, Side Draws 212

      5.3.4.3 Side Coolers, Heaters 214

      5.3.4.4 Tray Efficiency 214

Nomenclature 215

Subscripts 216

Superscripts 216

References 216

Chapter 6 Binary Distillation: Applications 217

6.1 Parameters Affecting Column Performance 217

      6.1.1 Effect of Reflux Ratio and Product Rates 218

      6.1.1.1 Product Rates 220

      6.1.2 Effect of Number of Stages and Feed Location 222

      6.1.3 Number of Stages versus Reflux Ratio 224

6.2 Parameter Interactions in Fixed Configuration Columns 226

      6.2.1 Column Operable Ranges 227

      6.2.2 Feasible Ranges of Product Rates and Reflux Ratios 228

      6.2.3 Feasible Ranges of Distillate and Bottoms Compositions 229

      6.2.4 Feasible Ranges of Distillate Composition and Reflux Ratio 230

      6.2.5 Feasible Ranges of Distillate Composition and Bottoms Rate 230

6.3 Design Strategies Guided by Graphical Representation 231

      6.3.1 Analytical Method 241

Nomenclature 242

Subscripts 243

Problems 243

References 246

Chapter 7 Multi-Component Separation: Conventional Distillation 247

7.1 Characteristics of Multi-Component Separation 247

7.2 Factors Affecting Separation 248

7.3 Specifying Column Performance 251

      7.3.1 Variation in Dependent Variables with Reflux Ratio and Product Rate 252

      7.3.2 Parameter Feasible Ranges 256

      7.3.2.1 Product Temperature as the Independent Variable 259

7.4 Number of Trays and Feed Location 262

      7.4.1 Minimum Reflux and Minimum Trays 262

      7.4.2 Feed Location 262

      7.4.3 Effect of Feed Thermal Conditions 264

      7.4.4 Rectifiers and Reboiled Strippers 264

Nomenclature 264

Subscripts 265

Problems 265

Chapter 8 Absorption and Stripping 267

8.1 Thermal Effects 267

8.2 Liquid-to-Vapor Ratios 270

8.3 Number of Stages 273

8.4 Performance Specifications 274

8.5 Graphical Representation 277

8.6 Analytical Solution 281

Nomenclature 282

Subscripts 282

Problems 282

Chapter 9 Complex Distillation and Multiple Column Processes 285

9.1 Multiple Feeds 286

      9.1.1 Columns with a Reboiler and No Condenser 286

      9.1.2 Columns with a Condenser and No Reboiler 293

      9.1.3 Columns with a Condenser and a Reboiler 297

9.2 Multiple Products 299

      9.2.1 Column Sections 299

      9.2.2 Degrees of Freedom 300

      9.2.2.1 Modular Representation 300

      9.2.2.2 General Column Performance Considerations 301

      9.2.3 Partial and Total Condensers 303

      9.2.3.1 Performance of Multi-Product Columns 304

9.3 Side Heaters/Coolers and Pumparounds 310

      9.3.1 Applications 310

      9.3.1.1 Temperature Levels 310

      9.3.1.2 Heat of Absorption 311

      9.3.1.3 Column Vapor and Liquid Flows 311

      9.3.2 Pumparounds 313

9.4 Multiple Column Processes 315

Nomenclature 318

Subscripts 319

Problems 319

Reference 322

Chapter 10 Special Distillation Processes 323

10.1 Azeotropic and Extractive Distillation 323

      10.1.1 Separating Azeotropes with Pressure-Sensitive Composition 325

      10.1.1.1 Graphical Representation 328

      10.1.2 Separating Heterogeneous Minimum-Boiling Azeotropes 330

      10.1.2.1 Graphical Representation 331

      10.1.3 Separation by Forming an Azeotrope with One Component 333

      10.1.4 Separation by Forming Two Binary Azeotropes 335

      10.1.5 Separation by Forming a Ternary Azeotrope 338

      10.1.6 Separation by Extractive Distillation 341

      10.1.6.1 Graphical Representation 342

      10.1.6.2 Sample Equilibrium Calculations 346

      10.1.6.3 Determining the Number of Stages 347

      10.1.6.4 Benzene Recovery Section 348

10.2 Three-Phase Distillation 348

10.3 Reactive Multistage Separation 350

      10.3.1 Separation of Close Boilers 351

      10.3.2 Esterification of Acetic Acid 351

      10.3.3 Other Applications 351

Problems 352

References 354

Chapter 11 Liquid–Liquid Extraction and Supercritical Extraction 355

11.1 Extraction Fundamentals and Terminology 356

      11.1.1 Simple Extractors 356

      11.1.2 Multiple Feeds 358

      11.1.3 Refluxed Extractors 359

11.2 Graphical Representation 360

      11.2.1 Generating Equilibrium Diagrams 361

      11.2.2 Single-Stage Calculations 361

      11.2.3 Countercurrent Multistage Calculations 364

      11.2.4 Multiple Feed and Refluxed Extractors 369

      11.2.5 LLE Rectilinear Representation 371

      11.2.5.1 Analytical Approach 371

11.3 Extraction Equipment 374

11.4 Supercritical Extraction 375

Nomenclature 377

Subscripts 377

Problems 377

Reference 380

Chapter 12 Shortcut Methods 381

12.1 Columns at Total Reflux 381

      12.1.1 Model Description 382

      12.1.2 Mathematical Representation 383

      12.1.3 Degrees of Freedom 387

      12.1.4 Solution Methods 388

      12.1.4.1 General Specifications 390

      12.1.5 Multiple Products 392

12.2 Minimum Reflux Ratio 398

12.3 Column Design and Performance Analysis 400

12.4 Modular Shortcut Methods 403

      12.4.1 Column Sections 404

      12.4.2 Reduced Model 411

      12.4.3 Complex Configurations 417

      12.4.3.1 Reboiled Stripper 418

      12.4.3.2 Distillation Column with a Partial Condenser 420

      12.4.3.3 Multi-Column System 421

      12.4.4 Liquid–Liquid Extraction by the Shortcut Column Section Method 422

Nomenclature 424

Subscripts 425

Superscript 425

Problems 425

References 434

Chapter 13 Rigorous Equilibrium Methods 435

13.1 Model Description 435

      13.1.1 Model Equations 437

13.2 Steady-State Solution Methods 439

      13.2.1 Method of Thiele and Geddes 440

      13.2.2 Modified Thiele–Geddes Method 443

      13.2.3 Method of Wang and Henke 448

      13.2.4 Method of Tomich 448

      13.2.5 Method of Naphtali and Sandholm 450

      13.2.6 Method of Wang and Oleson 453

      13.2.7 Two-Tier Methods 453

      13.2.7.1 Inner Loop Property Models 456

      13.2.7.2 Outer Loop Property Models 457

      13.2.7.3 Two-Tier Algorithm 457

      13.2.7.4 Tridiagonal Matrix Algorithm 459

      13.2.8 Stage Efficiencies 464

13.3 Chemical Reactions in Multistage Separation 465

13.4 Three-Phase Distillation 467

      13.4.1 Hydrocarbon–Water Systems 468

13.5 Liquid–Liquid Extraction 468

13.6 Convergence by Dynamic Iteration 469

13.7 Column Dynamics 474

      13.7.1 Dynamic Model Definition 475

      13.7.2 Solving the Dynamic Model Equations 477

      13.7.2.1 Euler’s Method 478

      13.7.2.2 Two-Point Implicit Method 479

      13.7.2.3 Runge-Kutta Method 480

Nomenclature 484

Subscripts 485

Superscripts 485

Problems 485

References 486

Chapter 14 Tray Hydraulics, Rate-Based Analysis, and Tray Efficiency 489

14.1 Tray Hydraulics 491

      14.1.1 Types of Trays 492

      14.1.1.1 Bubble Cap Trays 493

      14.1.1.2 Sieve or Perforated Trays 493

      14.1.1.3 Valve Trays 493

      14.1.2 Factors Affecting Tray Performance 493

      14.1.2.1 Foaming 493

      14.1.2.2 Vapor Entrainment 494

      14.1.2.3 Liquid Entrainment 494

      14.1.2.4 Liquid Gradient 494

      14.1.2.5 Weeping 494

      14.1.2.6 Flooding 494

      14.1.2.7 Pressure Drop 495

      14.1.2.8 Operable Ranges 496

      14.1.3 Steps in the Analysis of Tray Hydraulics 497

      14.1.4 General Tray Hydraulics Correlations 498

      14.1.4.1 Tray Diameter 498

      14.1.4.2 Tray Pressure Drop 501

      14.1.4.3 Downcomer Backup 503

      14.1.4.4 Weeping 504

      14.1.4.5 Liquid Holdup 504

14.2 Rate-Based Analysis 509

14.3 Tray Efficiency 514

      14.3.1 Murphree Efficiency 514

      14.3.2 Overall Column Tray Efficiency 517

      14.3.2.1 Theoretical Model 517

      14.3.2.2 Empirical Methods 518

Nomenclature 520

Subscripts 522

Superscripts 522

Problems 522

References 528

Chapter 15 Packed Columns 529

15.1 Continuous Differential Mass Transfer 530

      15.1.1 Nonparallel, Straight Operating Line, and Equilibrium Curve 532

15.2 Rate of Mass Transfer 536

      15.2.1 Mass Transfer Correlations 541

15.3 Mass Transfer in Packed Columns 541

      15.3.1 General Rate-Based Model 546

15.4 Packed Column Design 548

      15.4.1 Estimating the HETP 548

      15.4.2 Packed Column Capacity 549

      15.4.3 Packed Column Design Outline 550

      15.4.3.1 Packed Columns versus Trayed Columns 551

      15.4.4 Packed Column Design by the Group Method 554

Nomenclature 556

Subscripts 557

Superscripts 557

Problems 557

References 559

Chapter 16 Control and Optimization of Separation Processes 561

16.1 Multiloop Controllers 562

      16.1.1 Pairing the Manipulated and Controlled Variables 562

16.2 Dynamic Predictive Multivariable Control 569

      16.2.1 Model-Based Control and Optimization 569

Nomenclature 570

Subscripts 570

Superscripts 570

Problems 570

References 571

Chapter 17 Batch Distillation 573

17.1 Principles of Batch Distillation 574

      17.1.1 Effect of Holdup 575

      17.1.2 Operating Strategies 575

      17.1.2.1 Constant Reflux 575

      17.1.2.2 Constant Distillate Composition 576

      17.1.2.3 Cycling Operation 576

      17.1.3 Conceptual Control and Degrees of Freedom 576

17.2 Solution Methods 577

      17.2.1 Graphical and Shortcut Methods: Binary Systems 577

      17.2.1.1 Differential Distillation 581

      17.2.2 Shortcut Methods: Multi-Component Distillation 586

      17.2.3 Rigorous Methods 590

      17.2.4 Optimization 594

Nomenclature 595

Subscripts 596

Superscripts 596

Problems 596

References 598

Chapter 18 Membrane Separation Operations 599

18.1 General Membrane Separation Process 599

      18.1.1 Possible Consistent Sets of Units 602

18.2 Performance of Membrane Separators 606

      18.2.1 Perfect Mixing Model 606

      18.2.2 Cross-Flow Model 613

      18.2.3 Countercurrent and Cocurrent Flow Models 617

18.3 Applications 618

      18.3.1 Gas Permeation 619

      18.3.2 Dialysis 619

      18.3.3 Reverse Osmosis 622

Nomenclature 626

Subscripts 627

Problems 627

References 630

Chapter 19 Fluid–Solid Operations 631

19.1 Fluid–Solid Interaction Models 631

      19.1.1 Adsorbents 631

      19.1.2 Ion Exchangers 632

      19.1.3 Chromatographic Processes 634

19.2 Phase Equilibrium 634

      19.2.1 Isotherms 634

      19.2.1.1 Gas Adsorption 635

      19.2.2 Ion-Exchange Equilibrium 637

19.3 Applications 640

      19.3.1 Single-Stage Batch Equilibrium 640

      19.3.2 Nonequilibrium Processes 642

      19.3.3 Fixed-Bed Adsorption Columns 642

      References 644

查看更多

馆藏单位

中科院文献情报中心