外文科技图书简介
当前位置:首页 > 检索结果 >文献详细内容

书名:Principles of analog electronics

责任者:Giovanni Saggio.

ISBN\ISSN:9781466582019,1466582014 

出版时间:2014

出版社:CRC Press, Taylor & Francis Group,

分类号:无线电电子学、电信技术


摘要

In the real world, most signals are analog, spanning continuously varying values. Circuits that interface with the physical environment need to be able to process these signals. Principles of Analog Electronics introduces the fascinating world of analog electronics, where fields, circuits, signals and systems, and semiconductors meet. Drawing on the author's teaching experience, this richly illustrated, full-color textbook expertly blends theory with practical examples to give a clear understanding of how real electronic circuits work.
Build from the Essentials of Math, Physics, and Chemistry to Electronic Components, Circuits, and Applications
Building a solid foundation, the book first explains the mathematics, physics, and chemistry that are essential for grasping the principles behind the operation of electronic devices. It then examines the theory of circuits through models and important theorems. The book describes and analyzes passive and active electronic devices, focusing on fundamental filters and common silicon-based components, including diodes, bipolar junction transistors, and metal-oxide-semiconductor field-effect transistors (MOSFETs). It also shows how semiconductor devices are used to design electronic circuits such as rectifiers, power suppliers, clamper and clipper circuits, and amplifiers. A chapter explores actual applications, from audio amplifiers and FM radios to battery chargers.
Delve Deeper into Analog Electronics through Curiosities, Key Personalities, and Practical Examples
Each chapter includes helpful summaries with key points, jargon, and terms, as well as exercises to test your knowledge. Practical tables illustrate the coding schemes to help identify commercial passive and active components. Throughout, sidebars highlight "curiosities," interesting observations, and examples that make the subject more concrete. This textbook offers a truly comprehensive introduction to the fundamentals of analog electronics, including essential background concepts. Taking a fresh approach, it connects electronics to its importance in daily life, from music to medicine and more.

查看更多

前言

Any one who knows electronics can create new ideas, and this book explores that possibility by focusing on analog electronics. This is because in the real l world, signals are mostly analog, spanning continuously varying values, so that circuits interfaced with the physical world have an analog nature, to process analog signals.
The fascinating area of analog “grows" to overlap fundamental areas (fields, circuits, signals and systems, and semiconductors) , here morphed into a self-consistent comprehensive book. This approach leads to a text that captures the big picture, while still providing the necessary details, to reduce knowledge fragmentation and to improve learning outcomes.
The presentation is accurate and clear, including appropriate examples and detailed explanations of the behavior of real electronic circuits.
The text is "humanized" not only because the important theorems and laws are treated, but also because we look at the people who fundamentally contributed to those. Curiosities (How did Google get its name? Why is it difficult to locate crickets in a field? Why does the violin bridge have that strange shape? , etc.), observations, and real life application-oriented examples (electrocardiogram instrumentation, active noise-canceling headphones, USB-powered charger, etc.) are provided to contribute to a practical approach.
The first part of the book includes a clear and thorough presentation of the mathematical (Chapter 1) , physical (Chapter 2) , and chemical concepts (Chapter 3) that are essential to understanding the principles of operation of electronic devices. This maybe particularly useful for students with a limited background in basic matters who want to take a serious approach to electronics.
The circuit approach is detailed with models (Chapters 4, 5, 10) and main theorems (Chapter 6) .
Passive and active electronic devices are described and analyzed, with specific reference to the fundamental filters (Chapter 7) , and to the most commonS i-based components such as diodes, BJTs, and MOSFETs (Chapters 4, 8). Semiconductor devices are then used to design electronic circuits, such as rectifiers, powers up-pliers, clam per and clipper circuits (Chapter 9). The main topologies of amplifiers based on B JTs (Chapter 11), and on MOSFETs (Chapter 12), along with their vari-ants and improvements (Chapters 13, 14), are also discussed. Relevant or curious circuit applications are analyzed as well (Chapter 15).
At the end of each chapter, helpful summaries are provided, with key points, jargon, terms, and exercises with solutions also included.
Practical tables, often missing in many books on electronics, are included here to illustrate the coding schemes necessary to recognize commercial passive and active components.
MATLAB® is a high-level language and interactive environment for numerical computation, visualization, and programming. MATLAB® is a registered trademark of The MathWorks Inc. For product information, please contact:
The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098USA
Tel: 5086477000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

查看更多

目录

Preface xvii

Author xix

Chapter 1 Mathematical Tools 1

1.1 Multiples and Submultiples 1

1.2 Periodic Waveforms 3

      1.2.1 Sine Waves 9

      1.2.2 Square Waves 9

      1.2.3 Characterizations 10

      1.2.3.1 Average Value 10

      1.2.3.2 Root Mean Square Value 10

      1.2.3.3 Descriptive Values 11

1.3 Fundamental Trigonometric Formulae 11

      1.3.1 Pythagorean Identity 11

      1.3.2 Addition and Subtraction 12

      1.3.3 Werner Formulas 13

      1.3.4 Duplication Formulas 13

      1.3.5 Prosthaphaeresis Formulas 14

1.4 Complex Numbers 14

1.5 Phase Vector(or Phasor) 15

1.6 Laplace Transform 17

1.7 Taylor Series 18

1.8 Fourier Series and Integral 19

1.9 Modulation 21

1.10 Key Points, Jargon, and Terms 22

1.11 Exercises 23

Chapter 2 Physical and Electrical Background 29

2.1 Force, Work, Energy, Power 29

2.2 Heat and Temperature 32

      2.2.1 Degree Celsius or Centigrade(C) 32

      2.2.2 Degree Fahrenheit(°F) 33

      2.2.3 Kelvin(K) 33

2.3 Electric Charge 35

2.4 Coulomb Force 35

2.5 Electric Field 36

2.6 Electric Induction 38

2.7 Electric Current 39

2.8 Electric Voltage 41

2.9 Electron Mobility 43

2.10 Electric Energy and Power 43

2.11 Conventional Notations 45

2.12 Magnetic Field 45

      2.12.1 Biot-Savart Law 46

      2.12.2 Magnetic Properties of Matter 47

2.13 Magnetic Induction 48

2.14 Undulator y Phenomena 51

      2.14.1 Electromagnetic Waves 51

      2.14.1.1 Light 51

      2.14.1.2 Electromagnetic Waves in a Medium 52

      2.14.2 Mechanical Waves 53

2.15 Key Points, Jargon, and Terms 56

2.16 Exercises 57

Chapter 3 Nature of Matter 61

3.1 Atomic Model 61

      3.1.1 Shells, Subshells, Orbitals 63

      3.1.2 Spectroscopic Notation 66

      3.1.3 Octet Rule 67

3.2 Lattice 68

3.3 Wave-Particle Duality 70

3.4 Electromagnetic Radiation 72

      3.4.1 Photoelectric Effect 72

      3.4.2 Production of Radiation 73

      3.4.3 Radiation and Ionization 73

3.5 Energy Band Theory 76

3.6 Conductors 80

3.7 Insulators 81

3.8 Semiconductors 82

      3.8.1 Intrinsic and Extrinsic Semiconductors 82

      3.8.2 Commonly Used Semiconductors 82

      3.8.2.1 Germanium 84

      3.8.2.2 Silicon 84

      3.8.2.3 Gallium Arsenide 87

      3.8.2.4 Organic Semiconductors 88

      3.8.2.5 Others 88

3.9 Electrical Resistance and Joule Heating 89

3.10 Temperature Coefficient 89

3.11 Key Points, Jargon, and Terms 90

Chapter 4 Two-Terminal Components 93

4.1 Definitions 93

4.2 Conventional Notations 95

4.3 Topology of Interconnections 95

      4.3.1 Series Topology(Voltage Divider) 95

      4.3.2 Parallel Topology(Current Divider) 95

      4.3.3 Bridge Topology 96

      4.3.4 Star and Triangle Topologies 96

4.4 Resistors 97

      4.4.1 Resistance, Resistivity, Conductance, and Conductivity 97

      4.4.2 Classification 99

      4.4.3 Coding Scheme 100

      4.4.4 Power Resistors 103

      4.4.5 Trimmer and Potentiometer 104

      4.4.6 SMD Resistors 104

      4.4.7 Ohm's Law 105

      4.4.8 Joule's Law 108

      4.4.9 Real Power 108

      4.4.10 Physical Meaning of the RMS Value 110

      4.4.11 Resistors in Series 111

      4.4.12 Resistors in Parallel 112

      4.4.13 Resistor Bridge 113

      4.4.14 Resistors in Star and Triangle Connections 113

      4.4.15 Voltage Divider 115

      4.4.16 Current Divider 116

4.5 Electrical Sources 116

      4.5.1 Ideal Voltage Source 117

      4.5.2 Ideal Current Source 118

      4.5.3 Non-Ideal Voltage and Current Sources 118

4.6 Capacitors 119

      4.6.1 Capacitance 119

      4.6.2 Types of Capacitors 123

      4.6.3 Capacitor Markings 124

      4.6.3.1 Ceramic Capacitors 124

      4.6.3.2 Polyester Capacitors 125

      4.6.3.3 Electrolytic Capacitors 126

      4.6.3.4 Color-Coding Scheme 126

      4.6.3.5 SM Capacitors 126

      4.6.4 Charge and Discharge of a Capacitor 127

      4.6.5 Capacitors in Series 128

      4.6.6 Capacitors in Parallel 129

      4.6.7 Energy Stored in Capacitors 130

      4.6.8 Reactive Power 131

4.7 Inductors 133

      4.7.1 Inductance 133

      4.7.2 Flux 134

      4.7.3 Electromagnetic Induction 134

      4.7.4 Self-Inductance 136

      4.7.5 Types of Inductors 137

      4.7.5.1 Solenoid 137

      4.7.5.2 Coaxial 138

      4.7.6 Inductors in Series 138

      4.7.7 Inductors in Parallel 139

      4.7.8 Energy Stored in Inductors 140

      4.7.9 Reactive Power 140

4.8 Capacitor-Inductor Duality 141

4.9 Complex Power 142

4.10 Summary of Constitutive Relations 145

4.11 Key Points, Jargon, and Terms 145

4.12 Exercises 147

Chapter 5 Two-Port Networks 161

5.1 Definitions 161

5.2 Transformers 163

5.3 Dependent Sources 165

5.4 Models of Two-Port Networks 166

      5.4.1 Classification 167

      5.4.2 Equivalent Circuits 168

      5.4.3 Examples of Conversion between Network Parameters 168

      5.4.3.1 From (H) to(Z) 168

      5.4.3.2 From (Z) to(H) 170

      5.4.4 Conversion Table 171

      5.4.5 Examples 172

5.5 Interconnections of Two-Port Networks 175

      5.5.1 Series Connection 175

      5.5.2 Parallel Connection 175

      5.5.3 Series-Parallel and Parallel-Series Connections 176

      5.5.4 Cascade Connection 177

5.6 Key Points, Jargon, and Terms 178

5.7 Exercises 178

Chapter 6 Circuit Theorems 191

6.1 Definitions 191

      6.1.1 Electric Circuit and Its Elements 191

      6.1.2 Equivalent Networks 193

      6.1.3 Node, Branch, Mesh 193

      6.1.4 Ground and Floating Ground 194

      6.1.5 Decibel 195

6.2 Kirchhoff's Laws 197

      6.2.1 Kirchhoff's Current Law (KCL) 198

      6.2.2 Kirchhoff's Voltage Law (KVL) 198

6.3 Thevenin's Theorem 199

6.4 Norton's Theorem 201

6.5 Superposition Theorem 202

6.6 Miller's Theorem 203

6.7 Miller's Dual Theorem 205

6.8 Substitution Theorem 206

6.9 Impedance Matching and Bridging 206

      6.9.1 Introduction 206

      6.9.2 Maximum Power Transfer Theorem 207

      6.9.2.1 Resistive Impedances for Both Source and Load 207

      6.9.2.2 Complex Impedance for Source and Resistive Impedance for Load 208

      6.9.2.3 Complex Impedances for Both Source and Load 209

      6.9.3 Maximum Voltage or Current Transfer 211

      6.9.4 Efficiency 212

      6.9.5 Matching Networks 213

6.10 Who Decides What 213

6.11 Key Points, Jargon, and Terms 214

6.12 Exercises 215

Chapter 7 Frequency Domain 223

7.1 Introduction 223

7.2 Resistance, Reactance, Impedance 224

      7.2.1 Capacitive Reactance 225

      7.2.2 Inductive Reactance 226

7.3 Electronic Filters 226

      7.3.1 Low-Pass RC Filter 228

      7.3.1.1 Amplitude Response 229

      7.3.1.2 Phase Response 231

      7.3.1.3 Group Delay Response 232

      7.3.1.4 Considerations 233

      7.3.2 High-Pass RC Filter 233

      7.3.2.1 Amplitude Response 235

      7.3.2.2 Phase Response 236

      7.3.3 LC Filter 238

      7.3.4 RLC Filter 240

      7.3.5 Ideal Filters 244

7.4 Sources of Phase Shift 246

7.5 RC Integrator 247

7.6 Key Points, Jargon, and Terms 249

7.7 Exercises 249

Chapter 8 Semiconductor Components 253

8.1 Doping of Semiconductors 253

      8.1.1 N-Type Silicon 255

      8.1.2 P-Type Silicon 258

8.2 Charge Carriers 259

      8.2.1 Electrons and Holes 259

      8.2.2 Majority and Minority Carriers 260

      8.2.3 Law of Mass Action 263

8.3 Current in Semiconductors 264

      8.3.1 Drift Current 264

      8.3.2 Diffusion Current 266

      8.3.3 Total Current 268

      8.3.4 Leakage Current 268

8.4 P-N Junction 268

      8.4.1 Built-In Electric Field 269

      8.4.2 Built-In Potential 271

8.5 Diode 272

      8.5.1 The Bias 275

      8.5.1.1 Forward Bias 275

      8.5.1.2 Reverse Bias 276

      8.5.2 I-V Characteristic and Threshold Voltage 277

      8.5.3 The Resistance 279

      8.5.3.1 Static Resistance 280

      8.5.3.2 Dynamic Resistance 280

      8.5.4 The Capacitance 281

      8.5.4.1 Junction or Depletion Capacitance 281

      8.5.4.2 Diffusion or Transit Time Capacitance 281

      8.5.5 Zener 282

      8.5.6 LED 283

8.6 BJT 286

      8.6.1 Introduction 286

      8.6.2 Working Principles 288

      8.6.3 Forward-Active Mode 289

      8.6.4 Cutoff Mode 293

      8.6.5 Saturation Mode 293

      8.6.6 Modes and Models 293

      8.6.7 I-V Graph for C.B.Configuration 295

      8.6.7.1 Input Characteristics(C.B.) 295

      8.6.7.2 Output Characteristics(C.B.) 296

      8.6.8 I-V Graph for C.E.Configuration 297

      8.6.8.1 Input Characteristics(C.E.) 297

      8.6.8.2 Output Characteristics(C.E.) 298

      8.6.8.3 Early Effect 299

      8.6.9 I-V Graph for C.C.Configuration 300

      8.6.9.1 Input Characteristics(C.C.) 300

      8.6.9.2 Output Characteristics(C.C.) 301

8.7 MOSFET 301

      8.7.1 Field Effect Transistors 301

      8.7.2 Working Principles 302

      8.7.3 Ohmic Condition 304

      8.7.4 Pinch-Off Condition 306

      8.7.5 Saturation Condition 307

      8.7.6 I-V Graph 307

      8.7.7 Subthreshold Current 309

      8.7.8 Types of MOSFETs 309

8.8 BJT versus MOSFET 310

8.9 Numbering and Coding Schemes 311

      8.9.1 JEDEC 311

      8.9.2 Pro Electron 312

      8.9.3 JIS 312

      8.9.4 Others 313

8.10 Key Points, Jargon, and Terms 314

8.11 Exercises 315

Chapter 9 Diode Circuits 319

9.1 Rectifiers 319

      9.1.1 Half-Wave Rectifier 319

      9.1.2 Filtered Half-Wave Rectifier 320

      9.1.2.1 Choice of Smoothing Capacitor 321

      9.1.2.2 Choice of Diode 322

      9.1.2.3 Observation on Harmonic Content 324

      9.1.3 Bridge Full-Wave Rectifier 325

      9.1.4 Filtered Full-Wave Rectifier 326

9.2 DC PowerSupply 328

9.3 Voltage Doubler Circuits 330

9.4 Clam per Circuits 331

9.5 Clipper Circuits 332

9.6 Key Points, Jargon, and Terms 334

9.7 Exercises 334

Chapter 10 Amplifiers 339

10.1 Definitions and Classifications 339

10.2 Key Parameters 342

      10.2.1 Gain 342

      10.2.2 Impedances 342

      10.2.3 Efficiency 343

      10.2.4 Class 344

      10.2.5 Stability 347

      10.2.6 Bandwidth 347

      10.2.7 Slew Rate 351

      10.2.8 Distortion 351

      10.2.9 Noise 354

      10.2.9.1 Types 355

      10.2.9.2 Measures 357

10.3 Types of Amplifier 358

      10.3.1 Voltage Amplifier 358

      10.3.2 Current Amplifier 360

      10.3.3 Trans resistance Amplifier 362

      10.3.4 Transconductance Amplifer 364

      10.3.5 Power Amplifier 367

10.4 Loading Effect and Driving Parameters 367

10.5 Key Points, Jargon, and Terms 368

10.6 Exercises 369

Chapter 11 Amplifiers: Basic BJT Configurations 371

11.1 Conventional Notations 371

11.2 Step-by-Step First Design 371

      11.2.1 DC Bias Resistor 371

      11.2.2 AC Source 373

      11.2.3 DC Blocking Capacitors 373

      11.2.4 AC Collector Resistor 374

11.3 BJT as a Signal Amplifier 375

      11.3.1 BJT as a Two-Port Network 375

      11.3.2 BJT Small Signal Model 375

      11.3.2.1 Mathematical Meaning of the Hybrid Parameters 377

      11.3.2.2 Physical Meaning of the Hybrid Parameters 378

      11.3.3 DC and AC Current Gains 381

      11.3.4 Typical H-Parameter Values 382

      11.3.5 Hybrid Parameter Conversion 384

11.4 C.E.Configuration 385

      11.4.1 DC Analysis 387

      11.4.1.1 Fixed Bias 387

      11.4.1.2 DC Load Line 388

      11.4.1.3 DC Stability 389

      11.4.1.4 Emitter Feedback Bias 390

      11.4.1.5 Voltage Divider Bias 392

      11.4.2 AC Analysis 395

      11.4.2.1 AC Load Line 396

      11.4.2.2 C.E.: Input Resistance 398

      11.4.2.3 C.E.: Current Gain 400

      11.4.2.4 C.E.: Voltage Gain 403

      11.4.2.5 C.E.: Output Resistance 405

11.5 Swamped C.E 406

      11.5.1 DC Analysis 407

      11.5.2 AC Analysis 407

      11.5.2.1 Swamped C.E.: Current Gain 407

      11.5.2.2 Swamped C.E.: Input Resistance 408

      11.5.2.3 Swamped C.E.: Voltage Gain 410

      11.5.2.4 Swamped C.E.: Output Resistance 413

11.6 C.C.Configuration(Emitter Follower) 413

      11.6.1 DC Analysis 414

      11.6.2 AC Analysis 415

      11.6.2.1 C.C.(C.C.Hybrid Parameters): Input Resistance 416

      11.6.2.2 C.C.(C.C.Hybrid Parameters): Current Gain 417

      11.6.2.3 C.C.(C.C.Hybrid Parameters): Voltage Gain 418

      11.6.2.4 C.C.(C.C.Hybrid Parameters): Output Resistance 419

      11.6.3 AC Analysis (with C.E.Hybrid Parameters.) 420

      11.6.3.1 C.C.(C.E.Hybrid Parameters) : Current Gain 420

      11.6.3.2 C.C.(C.E.Hybrid Parameters) : Input Resistance 422

      11.6.3.3 C.C.(C.E.Hybrid Parameters) : Voltage Gain 423

      11.6.3.4 C.C.(C.E.Hybrid Parameters) : Output Resistance 424

11.7 C.B.Configuration 424

      11.7.1 DC Analysis 425

      11.7.2 AC Analysis 425

      11.7.2.1 C.B.: Input Resistance 427

      11.7.2.2 C.B.: Current Gain 428

      11.7.2.3 C.B.: Voltage Gain 430

      11.7.2.4 C.B.: Output Resistance 431

11.8 C.E., C.B., C.C.Comparisons 432

11.9 BJT Simplified Hybrid Model 434

11.10 Bias Stability 436

      11.10.1 FixedBias 437

      11.10.2 Collector Feedback Bias 438

      11.10.3 Voltage Divider Bias 439

      11.10.3.1 Stability versus ICBO 440

      11.10.3.2 StabilityversusVBEQ 441

      11.10.3.3 Stability versusβ 441

11.11 Key Points, Jargon, and Terms 443

11.12 Exercises 444

Chapter 12 Amplifiers: Basic MOSFET Configurations 453

12.1 MOSFET as a Signal Amplifier 453

      12.1.1 Biasing Circuits 456

      12.1.1.1 Drain Feedback Bias 456

      12.1.1.2 Voltage Divider Bias 457

      12.1.1.3 Source Feedback Bias 457

      12.1.2 Small-Signal Model 458

12.2 C.S.Configuration 458

      12.2.1 DC Analysis 459

      12.2.2 AC Analysis 461

      12.2.2.1 C.S.: Input Resistance 462

      12.2.2.2 C.S.: Output Resistance 462

      12.2.2.3 C.S.: Voltage Gain 463

12.3 C.D.Configuration(Source Follower) 464

      12.3.1 DC Analysis 464

      12.3.2 AC Analysis 465

      12.3.2.1 C.D.: Input Resistance 466

      12.3.2.2 C.D.: Output Resistance 466

      12.3.2.3 C.D.: Voltage Gain 468

12.4 C.G.Configuration 468

      12.4.1 DC Analysis 468

      12.4.2 AC Analysis 468

      12.4.2.1 C.G.: Input Resistance 469

      12.4.2.2 C.G.: Output Resistance 470

      12.4.2.3 C.G.: Voltage and Current Gains 471

12.5 Comparisons among C.S., C.D., C.G 472

12.6 Bias Stability 472

12.7 MOSFET as a Switch 473

12.8 Key Points, Jargon, and Terms 474

12.9 Exercises 474

Chapter 13 Amplifiers: Variants 477

13.1 Increased Input Resistance 477

      13.1.1 Darlington Pair 479

      13.1.2 Current Source 482

      13.1.3 Bootstrapping 484

13.2 Transformer-Coupled Load 485

13.3 Cascode Amplifier 490

13.4 Differential Amplifier 492

      13.4.1 Introduction 492

      13.4.2 Theory 492

      13.4.3 Basic Emitter-Coupled Pair 495

13.5 Key Points, Jargon, and Terms 497

Chapter 14 Amplifiers: Cascading Stages 499

14.1 Coupling 500

      14.1.1 RC, LC Coupling 501

      14.1.2 Transformer Coupling 502

      14.1.3 Impedance Coupling 503

      14.1.4 Direct Coupling 503

14.2 DC Analysis 504

      14.2.1 AC-Coupled Multistage Amplifiers 504

      14.2.2 DC-Coupled Multistage Amplifiers 504

14.3 AC Analysis 505

      14.3.1 Unilateral Stages 505

      14.3.2 Non-Unilateral Stages 506

14.4 Double-Stage C.E.-C.E. 507

      14.4.1 AC Input Resistances 508

      14.4.2 AC Current Gain 508

      14.4.3 AC Voltage Gain 509

      14.4.4 AC Output Resistance 510

14.5 Double-Stage C.E.-C.C. 511

      14.5.1 DC Analysis 511

      14.5.2 AC Analysis 513

14.6 Double-Stage C.C.-C.E. 514

14.7 Double-Stage C.S.-C.E. 516

      14.7.1 AC Input Resistance 517

      14.7.2 AC Output Resistance 517

      14.7.3 AC Voltage Gain 517

14.8 Bandwidth 517

14.9 Key Points, Jargon, and Terms 518

14.10 Exercises 518

Chapter 15 Some Applications 521

15.1 Audio Amplifier 521

15.2 FM Radio 523

      15.2.1 Transmitter 523

      15.2.2 Receiver 525

15.3 Battery Charger 525

      15.3.1 USB-Powered Charger 525

      15.3.2 ACMains-Powered Charger 526

15.4 Early Heart Pacemaker 527

15.5 Other Transistor Applications 528

      15.5.1 Liquid Level Indicator 529

      15.5.2 Battery Voltage Monitor 529

      15.5.3 Dark/Light Activated LED/Relay 530

      15.5.4 Measure of Temperature 532

      15.5.5 Simple Timer 532

      15.5.6 Cyclic Beep Generator 532

Index 535

查看更多

作者简介

Giovanni Saggio earned a masters degree in electronics engineering and a PhD in microelectronics and telecommunication engineering at the University of Rome Tor Vergata. PA\He was offered one fellowship by Texas Instruments and two fellowships by the Italian National Research Council (CNR). He developed research on nanoelectron-ics at Glasgow University (Ultra Small Structure Lab), and on electronic devices at Cambridge University (Cavendish Lab), and Oxford University (Rutherford Appleton Lab). He has been a designer, planner, and director of electrical installations and security systems, as well as hydraulic systems. PA\Professor Saggio is currently a researcher and aggregate professor at the University of Rome Tor Vergata (Italy), where he holds chairs in electronics at the engineering faculty (Departments of Information, Automation, Mathematics,Biomedical Engineering, Master of Sound, and Master of CBRN Protection) and at the medical faculty (Departments of Neurophysiology, Cardiovascular Medicine,Orthopedics, and Audiology). PA\He has been working on problems concerning electronic noise, SAWs, and electronic sensors, and more recently, his research activity concerns the field of biotechnology PA\Professor Saggio has been project leader of research for the Italian Space Agency (ASI), for the avionic service of the Italian Defence Department (Armaereo), and for the Italian Workers' Compensation Authority (INAIL). He is currently a mem-ber of Italian Space Biomedicine, and the founder and manager of HITEG (Health Involved Technical Engineering Group). PA\Professor Saggio has authored or co-authored more than 100 scientific pub-lications for conferences and international journals, four patents, several book chapters, and is the sole author of three books (in Italian): Basi di Elettronica (three editions), Applicazioni di Elettronica di Base, and Elettronica Analogica Fondamentale (Univers Italia ed.).

查看更多

馆藏单位

中科院文献情报中心