书名:Linear models for the prediction of animal breeding values
责任者:Raphael A. Mrode. | Mrode, R. A.
ISBN\ISSN:9781845939816,9781780643915
摘要
The prediction of producing desirable traits in offspring--such as increased growth rate or superior meat, milk and wool production--is a vital economic tool to the animal scientist. Summarizing the latest developments in genomics relating to animal breeding values and design of breeding programs, this new edition includes models of survival analysis, social interaction and sire and dam models, as well as advancements in the use of SNPs in the computation of genomic breeding values.
查看更多
目录
Preface XIII
Abbreviations xv
1. Genetic Evaluation with Different Sources of Records 1
1.1. Introduction 1
1.2. The Basic Model 1
1.3. Breeding Val ue Prediction from the Animal's Own Performance 2
1.3.1. Single record 2
1.3.2. Repeated records 3
1.4. Breeding Value Prediction from Progeny Records 6
1.5. Breeding Value Prediction from Pedigree 9
1.6. Breeding Value Prediction for One Trait from Another 10
1.7. Selection lndex 11
1.7.1. Accuracy of index 12
1.7.2. Examples of selection indicesusing different sources of in formation 14
1.7.3. Prediction of aggregate genotype 16
1.7.4. Overa ll economic indices using predicted genetic merit 18
1.7.5. Restricted selection ind ex 19
1.7.6. Index combining breeding values from phenotype and genetic marker information 21
2. Genetic Covariance Between Relatives 22
2.1. Introduction 22
2.2. The Numerator Relationship Matrix 22
2.3. Decomposing the Relationship Matrix 23
2.4. Computing the Inverse of the Relationship Matrix 25
2.4.1. Jnverse of the numerator relationship matrixignoring inbreeding 26
2.4.2. Inverse of the numerator relationship matrix accou n ti ng for i n breeding 28
2.5. Inverse of the Relationship Matrix for Sires and Maternal Grandsires 30
2.6. An Example of the Inverse of a Sire and Maternal Gra ndsire Relationship Matrix 32
3. Best Linear Unbiased Prediction of Breeding Value: Univariate Models with One Random Effect 34
3.1. Introduction 34
3.2. Brief Theoretical Background 35
3.3. A Model for an Animal Evaluation ( Animallvlodel ) 37
3.3.1. Constructing the mixed model equations 38
3.3.2. Progeny (daughter) yield deviation 42
3.3.3. Accuracy of evaluations 44
3.4. A Sire Model 46
3.4.1. An illustration 46
3.5. Reduced Animal Model 49
3.5.1. Defining the model 49
3.5.2. An illustration 51
3.5.3. An alternative approach 54
3.6. Animal Model with Groups 54
3.6.1. An illustration 56
4. Best Linear Unbiased Prediction of Breeding Value: Models with Random Environmental Effects 61
4.1. Introduction 61
4.2. Repeata bility Model 61
4.2.1. Defining the model 62
4.2.2. An illustration 62
4.2.3. Calculating daughter yield deviations 66
4.3. Model with Common Environmental Effects 66
4.3.1. Defining the model 67
4.3.2. An illustration 67
5. Best Linear Unbiased Prediction of Breeding Value: Multivariate Animal Models 70
5.1. Introduction 70
5.2. Equal Design Matrices and No Missing Records 71
5.2.1. Defining the model 71
5.2.2. An illustration 72
5.2.3. Partitioning animal evaluations from multivariate analysis 74
5.2.4. Accuracy of multivariate evaluations 76
5.2.5. Calculating daughter yield deviations in multivariate models 77
5.3. Equal Design Matrices with Missing Records 78
5.3.1. An illustration 78
5.4. Unequal Design Matrices 80
5.4.1. Numerical example 80
5.4.2. Illustrating the computation of DYD from a m ultivariate model 82
5.5. Multivariate Models with No Environmental Covariance 84
5.5.1. Different traits recorded on relatives 84
5.5.2. The multi-trait across-country evaluations (MACE) 86
6. Methods to Reduce the Dimension of Multivariate Models 95
6.1. Introduction 95
6.2. Canonical Transformation 95
6.2.1. The model 96
6.2.2. An illustration 97
6.3. Cholesk y Transformation 98
6.3.1. Calculati ng the transformation matrix and defining the model 98
6.3.2. An illustration 99
6.4. Factor and Pri ncipal Com ponent Analysis 101
6.4.1. Factor analysis 102
6.4.2. Pri ncipal com ponent analysis 105
6.4.3. Analysis with reduced rank PC model 106
7. Maternal Trait Models: Animal and Reduced Animal Models 109
7.1. Introduction 109
7.2. Animal Model for a Maternal Trait 110
7.2.1. Anillustration 110
7.3. Reduced Animal Model with Maternal Effects 115
7.3.1. Anillustration 116
7.4. Sire and Maternal Grandsire Model 119
8. Social [nteraction Models 121
8.1. Introduction 121
8.2. A nimal Model with Social Interaction Effects 123
8.2.1. Illustration of a model with social interaction 125
8.3. Partitioning Evaluations from Associative Models 127
8.4. Analysis Using Correlated Error Structure 128
9. Analysis of Longitudinal Data 130
9.1. lntroduction 130
9.2. Fixed Regression Model 131
9.2.1. Anillustration 132
9.3. Random Regression Model 136
9.3.1. Nu merical application 138
9.3.2. Partitioning animal solutions from random regression model 142
9.3.3. Calculating daughter y ield deviations 145
9.3.4. Reliabil ity of breeding va l ues 146
9.3.5. Rand om regression models with spl ine function 147
9.3.6. Random regression model for maternal tra its 148
9.4. Covaria nce Fu nctions 149
9.4.1. Fitting a reduced order cova riance function 151
9.5. Equiva lence of the Random Regression Model to the Cova riance Function 155
10. Use of Genetic Markers in Breeding Value Prediction 156
10.1. Introduction 156
10.2. Defining a Model with Marker Information 156
10.3. Calculating the Covariance Matrix (G,,) for MQTL Effects 157
10.3.1. Numerical application 158
10.4. An Alternative A pproach for Ca lculating G., 160
10.5. Calcu la ti ng rhe Inverse of Gv 161
10.6. Pred iction of Breeding Values with Marker Information 160
10.6.1. Anillustration 165
10.7. Directly Predicting the Additive Genetic Merit at the MQTL 167
10.7.1. An illustration 168
10.8. Predicting Total Additive Genetic Merit 169
10.8.1. Numerical application 169
10.9. Analysis of Data with QTL Bracketed by Two Markers 171
10.9.1. Basic model 171
10.9.2. Calculating the covariance matrix, G 172
10.9.3. An illustration 174
11. Computation of Genomic Breeding Values and Genomic Selection 177
11.1. Introduction 177
11.2. General Linea r Model 178
11.3. Coding and Scaling Genotypes 178
11.4. Fixed Effect Model for SNP Effects 179
11.5. Mixed Linear Model for Computing SNP Effects 182
11.5.1. SNP-BLUP model 183
11.5.2. Equivalent models: GBLUP 184
11.5.3. Equivalent models: selection index approach 187
11.6. Mixed Linear Models with Polygenic Effects 188
11.7. Single-step Approach 190
11.8. Bayesian Methods for Computing SNP Effects 193
11.8.1. Ba yesA 194
11.8.2. BayesB 197
11.8.3. BayesC 199
11.8.4. BayesC1t 201
11.9. Cross-validation and Genomic Relia bilities 202
11.10. Understanding SNP Solutions from the Various Models 202
12. Non-additive Animal Models 204
12.1. Introd uction 204
12.2. Dominance Relationship Matrix 204
12.3. Ani mal Model with Dominance Effect 205
12.3.1. Solving for animal and dominance genetic effects separately 206
12.3.2. Solving for total genetic merit directly 208
12.4. Method for Rapid Inversion of the Dominance Matrix 209
12.4.1. Inverse of the relationship matrix of subclass effects 210
12.4.2. Prediction of domi nance effects 211
12.4.3. Calculati ng the inverse of the relationship matrix among dominance and subclass effects for exam ple data 212
12.5. Epistasis 215
12.5.1. Rules for the inverse of the relationship matrix for epistatic and subclass effects 216
12.5.2. Calculating the inverse relationship matrix for epistasis and the subclass matrix for an example pedigree 217
13. Analysis of Ordered Categorical Traits 219
13.1. Introduction 219
13.2. The Threshold Model 220
13.2.1. Defi ning some functions of the normal distribution 220
13.2.2. Dara organization and the threshold model 221
13.2.3. Numerical example 223
13.3. Joint Analysis of Quantitative and Binary Traits 230
13.3.1 Dara and model definition 230
13.3.2. Numerical application 234
14. Survival Analysis 240
14.1. Introduction 240
14.2. Functional Survival 240
14.3. Censoring 240
14.4. Model for Analysis of Survival 241
14.4.1. Linear models 241
14.4.2. Random regression models for survival 241
14.4.3. Proportional hazard mod els 243
14.4.4. on-para metric estimation of the survival function 245
14.4.5. Regression u rv i va l models 246
14.4.6. Mi xed su rv iva l models 247
14.4.7. Group data su rvi va l model 250
15. Estimation of Genetic Parameters 251
Robin Thompson
15.1. Introduction 251
15.2. Univari ate Sire Model 251
15.3. Numerical Example of Sire Model 252
15.4. Extended lode! 253
15.5. umerical Exa m ple 2 -4
15.6. An imal Model 255
15.7. Nu merical Exa m ple 257
16. Use of Gibbs Sampling in Variance Component Esti mation and Breeding Value Prediction 260
16.1. Introduction 260
16.2. Uni va riate Animal Model 261
16.2.l. Prior distri butions 261
16.2.2. Joint and full conditional distribution 262
16.2.3. In ferences from the Gibb sampling output 264
16.2.4. Numerical application 265
16.3. Multivariate Animal Model 266
16.3.1. Prior distribu tions 267
16.3.2. Conditiona l probabilities 267
16.3.3. Numerical illustration 269
17. Solving Linear Equations 271
17.1. Introduction 271
17.2. Direct Inversion 271
17.3. Iteration on the Mixed Model Equations 271
17.3.1. Jacobi iteration 272
17.3.2. Gauss-Seidel iteration 275
17.4. Iterating on the Data 276
17.4.1. Animal model without groups 278
17.4.2. Animal model with groups 282
17.4.3. Reduced animal model with maternal effects 284
17.5. Precondi tioned Conjugate Gradient Algorithm 292
17.5.1. Computation strategy 293
17.5.2. Numerical applica tion 294
Appendix A: Introduction to Matrix Algebra 299
A.1 Matrix: A Definition 299
A.2 Special Matrices 300
Appendix B: Fast Algorithms for Calculating Inbreeding Based on the L Matrix 306
B.1 Meuwissen and Luo Algorithm 306
B.1.1 Illustration of the algorithm 307
B.2 Modified Meuwissen and Luo Algorithm 308
B.2.1 Illustration of the algorithm 309
Appendix C 311
C.1 Outline of the Derivation of the Best Linear Un biased Prediction (BLUP)
311
C.2 Proof that b and a from MME are the GLS of band BLUP of a, Respectively 312
C.3 Deriving the Equation for Progeny Contribution (PC) 313
Appendix D: Methods for Obtaining Approximate Reliability for Genetic Evaluations 314
D.1 Computing Approximate Reliabilities for an Ani mal Model D.2 Computing Approximate Reliabilities for Random Regression Models 314
D.2.1 Determine value of observation for an animal 316
D.2.2 Val ue of record on descendants 316
D.2.3 Val ue of records on ancestors 317
Appendix E 318
E.1 Canonical Transformation: Procedure to Calculate the Transformation Matrix and its Inverse 318
E.2 Canonical Transformation wi th Missing Records and Same Incidence Matrices 319
E.2.1 Illustration 320
E.3 Cholesky Decom position 322
Appendix F: Procedure for Computing Deregressed Breeding Values 323
Appendix G: Calculating, a Matrix of Legendre Polynomials Evaluated at Different Ages or Time Periods 325
References 327
Index 337
查看更多
作者简介
Raphael Mrode is Professor of Quantitative Genetics and Genomics at Scotland's Rural College. He has been lecturing on Edinburgh University's Masters course on quantitative genetics and genome analysis since 2005, and has given lectures on mixed linear models and the use of various BLUP models for genetic prediction. His research interests include data modelling and analysis, the incorporation of molecular information in genetic evaluation procedures, the application of innovative approaches for data capture, analysis and feedback and investigating methods for generating alternative and novel phenotypes in small dairy systems in developing countries.
查看更多
馆藏单位
中科院文献情报中心 中国农科院农业信息研究所