外文科技图书简介
当前位置:首页 > 检索结果 >文献详细内容

书名:Umweltradioaktivitat und Strahlenbelastung Jahresbericht 2017

责任者:BfS  |  Trugenberger-Schnabel, Angela  |  Merchel, Daniela  |  Lobke-Reinl, Angelika  |  Peter, Josef

出版时间:2018

出版社:Bundesamtes fur Strahlenschutz

分类号:一般工业技术

页数:366p


摘要

Since 1958, all data on environmental radioactivity from measurements performed by authorised laboratories have been published in quarterly reports and, since 1968, in annual reports. In addition to the results from environmental monitoring, these reports include data on the population exposure due to natural and man-made radiation sources.
The table below shows the mean radiation exposure of one person of the general public in the Federal Republic of Germany in 2016, broken down into the various sources of radiation. The mean effective dose is about 3,8 millisieverts (mSv) per year and per individual.
The contributions to the mean annual effective dose to one person are itemised in the table. The highest contribution is caused by medical applications, especially computerised tomography examinations. Another important source of radiation exposure is the naturally occurring noble gas radon and inhalation of its progeny, which particularly accumulate in poorly ventilated rooms. It should be noted that the numerical values represent effective doses averaged over the entire population. The actual dose to an individual during a year is highly dependent on their individual circumstances.
Natural radiation sources
Exposure from natural radiation sources consists of both an external and an internal component due to natural radioactive substances in the environment as well as cosmic radiation. A major source of external radiation exposure consists of both cosmic radiation and radiation from the natural radionuclide K-40 together with the radionuclides of the natural decay chains of U-238 and Th-232 in soil and building materials. The internal component of radiation exposure is largely caused by inhalation of the daughter nuclides of the natural noble gas radon (radon decay products), and partially also by the intake of natural radioactive substances with drinking water and food. Typically, natural radiation sources contribute to the effective dose to the level of 2 to 3 mSv per year. The nominal mean value, calculated on the basis of the dose factors set out in the applicable Euratom basic safety standards, is 2.1 mSv per year, resulting in particular from the inhalation of radon in buildings. An annual comparison shows that there are only slight variations in exposure to natural radiation sources. All individual contributions to the annual mean effective dose are listed in the above table.
Mining and industry relics
In the process of remediation works carried out by Wismut GmbH in the former uranium ore mining area in Saxony and Thuringia, radionuclides of the uranium/radium decay chain are released into the air and water which are discharged into the environment with permission of the competent authorities. A mining-related increase in the concentration of radon in air close to ground level is seen only in the immediate vicinity of mining facilities; the concentration decreases with increasing distance from such facilities. The overall results of the measurements in the aforementioned uranium mining regions reveal a high radon concentration of natural origin just as expected for geologically comparable regions. The discharge of uranium and radium and their respective decay products from mining facilities into drainage areas of the mining regions does not cause an appreciable change of the natural level of these radionuclides in these drainage areas. The discharge of radioactive substances (Rn-222 and long-lived alpha emitters, uranium and Ra-226) through the exhaust air and effluents from subsurface mining facilities in areas belonging to the Wismut redevelopment project are subject to certain fluctuations, depending on the course of remediation measures and the weather, but show a decreasing tendency altogether.
Radon indoors
In Germany, the annual mean value of the radon activity concentration indoors is about 50 becquerels per cubic metre (Bq/m3), which corresponds to a mean annual effective dose of about 0.9 mSv. In addition, there is 0.2 mSv in the outdoor area. Measurements performed during recent years revealed considerable regional variations in natural radiation exposure, because the concentrations of natural radioactive substances in soil and air differ largely. The construction of houses on land containing increased amounts of uranium and radium, and to a lesser extent, the use of building materials containing increased amounts of radioactive substances are assumed to be responsible for the increase in population exposure due to the inhalation of radon and its decay products. During the last few years, national and international epidemiological studies were performed in order to obtain estimates of the health risk associated with increased exposures of the general public to radon decay products. The studies revealed a significant increase in lung cancer risk by about 10 % per 100 Bq/m3. The Radiation Protection Act adopted in 2017 provides for a reference level of 300 Bq/m3.
Radioactive materials in building materials and industrial products
Current analyses of ordinary industrially fabricated building materials designed for use indoors confirm that the dose caused by their concentrations of the natural radionuclides Ra-226, Th-232, and K-40 is about 0.3 mSv per year on the average and may reach or exceed 1 mSv per year in individual cases. This means that the Europe-wide criterion (Euratom basic standards) accepted to limit radiation exposure from building materials is observed on the whole. Discharges of Rn-222 from mineral building materials were also accounted for, but turned out to be generally small. When investigating natural stone building materials used in dwellings it was established that in most cases these building materials do not cause enhanced radiation exposure, even when used in large amounts.
Nuclear weapons testing
Numerous atmospheric nuclear weapons tests were carried out from 1945 to 1980, but since 1981 only underground tests have been performed. Underground nuclear weapons tests were conducted in North Korea in 2006, 2009, 2013 and 2016. In September 2017, North Korea carried out another nuclear weapons test. The general level of environmental radioactivity due to former tests in the atmosphere has steadily decreased since the Partial Nuclear Test Ban Treaty from 1963. At present nuclear weapons tests contribute less than 0.01 mSv per year to the total of human radiation exposure.
Chernobyl reactor accident
In April 1986, a reactor accident occurred in the Chernobyl nuclear power plant which has had serious consequences. In the days following that accident, large amounts of radionuclides were released into the atmosphere and distributed all over Europe. In Germany, mostly areas in Southern Germany were affected by the radioactive fallout. Soil contamination with Cs-137 partially reached up to 100 000 Bq/m2 here.
Radiation exposure resulting from the Chernobyl reactor accident decreased further, albeit marginally, in 2017; the mean effective dose was less than 0.01 mSv. It amounts to less than one percent of the natural radiation exposure; about 90 % of this radiation is caused by Cs-137 deposited on the ground. The mean effective dose from the intake of radiocaesium with food is estimated to have been less than 0.001 mSv in 2017. In Southern Germany, the levels of radiation exposure may be one order of magnitude higher. In particular the concentration of Cs-137 in wild boar meat still exceeds the maximum value permissible of 600 Bq/kg (EEC 737/90) in some cases.
Nuclear technology
The levels of radiation exposure calculated for 2017 from the annual emissions of radioactive substances in accordance with the "General Administrative Guideline relating to § 47 of the Radiation Protection Ordinance" did not exceed the dose limits indicated in the Radiation Protection Ordinance. They are within the range of the corresponding values of the preceding year, accounting for less than ten per cent of the respective dose limit. The upper values of radiation exposure due to emissions of radioactive substances from nuclear installations are clearly below the range of variation of natural radiation exposure in the Federal Republikc of Germany. The total generation of electricity from the seven nuclear power plants currently in operation decreased to 76,3 terawatt hours (TWh) in 2017.
Occupational radiation exposure
Persons who might incur enhanced radiation doses at work are subject to radiation protection monitoring in Germany (approx. 418 000 individuals in 2017). Most of these persons occupationally exposed to radiation were monitored using personal dosimeters. The average annual individual dose (measured in approx. 373 000 individuals) amounted to 0.06 mSv in 2017. In 86 % of all persons involved the personal dose was 0 mSv over the entire monitoring period. An average annual personal dose of 0.45 mSv (preceding year: 0.47 mSv) was determined for all other cases with a measurable dose (approx. 51 000). In 2017, two individuals were registered whose personal doses exceeded the limit value of 20 mSv per year (§78 Radiation Protection Act).
Since August 1, 2003, aircrews who are in an employment according to German Labour Law and who can receive an effective dose of at least 1 mSv per calendar year from cosmic radiation during the flight must be monitored. Flight attendants are not monitored with the help of dosimeters. Instead, the airlines determine the dose to the aircrews with officially approved computer programs. In 2017, this applied to approx. 44 700 individuals (preceding year: 43 000 individuals). The average annual dose of these employees amounted to 2.1 mSv (preceding year: 2.0 mSv).
Medical application
The major part of man-made radiation exposure is caused by medical applications of radioactive substances and ionising radiation, in particular in X-ray diagnostics. Since 1991, BfS therefore has collected and analysed data on medical radiation exposure in Germany. The present report exhibits the values available from 2007 to 2015.
In 2015, medical applications contributed about 1.6 mSv per inhabitant to the mean effective dose in Germany. The observation period from 2007 to 2015 altogether reveals an upward trend of the mean effective dose per inhabitant and year. This trend is mainly due to the increasing frequency of CT examinations and the accompanying increase in the effective dose per individual. With respect to all other types of medical examinations, however, the effective dose per inhabitant exhibited a decrease from 2007 to 2015. While CT and angiography procedures (that are dose-intensive as well), including interventions, accounted for only 10 % of the overall frequency of 1.7 X-ray examinations per inhabitant per year, these procedures contributed more than 80 % of the collective effective dose in 2015.
For nuclear medical diagnostics, the average effective dose is estimated at 0.1 mSv per inhabitant and year in the period 2011 to 2015. Approximately three quarters of the collective effective dose were caused by skeletal, myocardial and thyroid examinations. Positron Emission Tomography, which is associated with relatively high doses (PET) is also gaining more importance, due to its high diagnostic value, but is increasingly replaced by PET/CT examinations.
From 2004 to 2009 the quality-assured, population-based Mammography Screening Program was introduced on a large scale for all (asymptomatic) women aged 50 to 69. The Mammography Screening Program is now offered nationwide. In Germany, about 11 million women are entitled to participate. The attendance rate was 51 % in 2016.
Radioactive waste
Primary waste and pretreated waste intended for the Konrad mine or another repository added up to a total of 19 614 t stored by all waste producers on 31 December 2017.The inventory of waste in inner containers was ap-prox.17 401 m3. A portion of 3 075 m3 was already subject to product monitoring, which currently includes at least the radiological part of product monitoring. The greatest stock of waste products is in "Konrad" containers: approx. 104 550 m3, of which about 2 936 m3 were subject to product monitoring and are ready to be stored in by the future Konrad repository. Only 151 m3 and 4 529 t of radioactive waste are not intended for the Konrad mine.
A total of approx. 15 374 tonnes (t) of HM (heavy metal = uranium + plutonium) accrued in the form of spent fuel elements up to 31 December 2017 in Germany, of which approx. 6 670 tonnes were delivered abroad or to other facilities for reprocessing.
In addition, a total of 190 t of HM in the form of spent fuel elements accrued from experimental and demonstration reactors in Germany, of which the major part was reprocessed.
Radiation accidents and exceptional events
Radiation accidents and exceptional events
Due to the stringent provisions of the radiation protection law, radiological emergencies involving persons handling sources of ionising radiation and radioactive substances are rare events. These events are summarised in this report on an annual basis.
For the most part, the exceptional events reported for 2017 involved discoveries of radioactive material mostly associated with improper disposal of the radioactive substance. There was no case of substantial radiological hazard.
Some of the reported events occurred in the field of medical applications. In 2017, four events involving unintended exposure in the medical context were reported that were due to human failure (e.g. wrong settings, patient misidentification, transmission errors).
Non-Ionising radiation
The higher the level of technology applied in human environment the greater the number of artificial sources of non-ionising radiation to which the general public is exposed. This was a challenge for radiation protection also in 2017. In order to obtain a solid data base for the evaluation of risk associated with non-ionising radiation BfS continued to initiate and co-ordinate research projects within the scope of the Departmental Research Plan of the Federal Ministry for the Environment (BMU) in 2017. These projects covered the areas of both "Low-frequency and high-frequency electromagnetic fields" and "Optical radiation". The results of the studies completed in 2017 are published in the Programme Report 2017 (http://nbn-resolving.de/urn:nbn:de:0221-2018071915600).
In the area of "electromagnetic fields", research and communication activities by BMU and BfS have been focused on grid expansion. When low-frequency and direct current systems (such as power lines) are erected or are subject to significant alterations, everything possible shall be done to minimise the electric and magnetic fields originating from the system, according to the state of the art and considering the conditions in the area of impact. The connection between an increased risk of childhood leukaemia and increased exposure to magnetic fields at home has not been clarified as yet and requires further research. In order to reduce existing scientific uncertainties as to risk assessment and to answer open questions, BfS will implement an accompanying research programme on “radiation protection for grid expansion”. The programme covers eight subject areas involving 36 research projects. For more details please refer to http://www.bfs.de/DE/bfs/wissenschaft-forschung/bfs-forschungsprogramm/stromnetzausbau/netzausbau_node.html.
In the field of "Optical Radiation", uses for cosmetic and wellness purposes and the clear increase in skin cancers have been the main reasons for the BfS‘s further research and for continuous optimization of both risk communication and information measures. A representative survey on side effects of cosmetic uses of strong optical radiation sources in cosmetics was completed 2017.
In 2017, the UV-Protection Alliance published the jointly prepared position paper "Prevention of health impacts from the sun - relational prevention in urban and rural environments", It is aimed at establishing nationwide relational interventions to protect against excessive UV-exposure and other health impacts such as heat stress induced by exposure to the sun which are increasing due to climate change. Continuous measurements of the intensity of erythema-effective UV radiation, performed within the solar UV measuring network operated by BfS/UBA, have shown that the UV index reached very high values in the northern, central and southern parts of Germany in June 2017 as in 2016. In Dortmund and Munich, the number of days recorded with very high UV index readings was significantly higher than in the previous year.
With respect to a reduction of the skin cancer risk associated with the use of sunbeds, BfS and BMU continued to support the Laender authorities in their monitoring work by holding information events and giving advice by telephone also in 2017.

查看更多

前言

Seit 1958 werden die von den amtlichen Messstellen gemessenen Werte der Radioaktivität in der menschlichen Umwelt in Form von Vierteljahresberichten, seit 1968 in Jahresberichten veröffentlicht. Dieser Bericht enthält neben den Ergebnissen der Überwachung der Umweltradioaktivität Angaben über die Strahlenexposition der Bevölkerung durch verschiedene Quellen und behandelt u. a. folgende Themen:
-Quellen natürlicher und zivilisatorisch veränderter natürlicher Radioaktivität,
-Radon in Gebäuden,
-Radioaktive Stoffe in Baumaterialien und Industrieprodukten,
-Kernwaffenversuche,
-die Folgen der Reaktorunfälle in Tschernobyl und Fukushima,
-kerntechnische Anlagen,
-berufliche Tätigkeit,
-medizinische Anwendung,
-Umgang mit radioaktiven Stoffen in Forschung und Technik,
-radioaktive Abfälle,
-Strahlenunfälle und besondere Vorkommnisse.
Darüber hinaus werden seit 2001 auch Informationen über die nichtionisierende Strahlung (NIS) und Forschungsprojekte in diesem Bereich veröffentlicht.
Dieser Bericht ist in drei Teile gegliedert. Im ersten Teil „Bericht“ werden die aktuellen Daten wiedergegeben und bewertet. Detaillierte Tabellen und Werte befinden sich hierzu im Teil „Tabellen“. Zudem werden allgemeine Angaben, eine Einführung in die jeweilige Thematik sowie ausführliche Hintergrundinformationen im Teil „Grundlagen“ dargestellt.

查看更多

目录

ZUSAMMENFASSUNG 10

SUMMARY 14

I NATÜRLICHE UMWELTRADIOAKTIVITÄT

1. Natürliche Umweltradioaktivität 19

2. Zivilisatorisch veränderte natürliche Umweltradioaktivität 19

      2.1 Hinterlassenschaften und Rückstände aus Bergbau und Industrie 19

      2.2 Radon in Gebäuden 22

      2.3 Radioaktive Stoffe in Baumaterialien und Industrieprodukten 24

II KÜNSTLICHE UMWELTRADIOAKTIVITÄT

1. Quellen künstlicher Radioaktivität 26

      1.1 Kernwaffenversuche 26

      1.2 Zivile Freisetzungen 26

      1.3 Tschernobyl - Strahlenexposition durch den Reaktorunfall 28

      1.4 Anlagen nach Atomgesetz 30

      1.5 Ableitung radioaktiver Stoffe aus Anlagen nach Atomgesetz 32

      1.6 Strahlenexposition durch Anlagen nach Atomgesetz 36

2. Allgemeine Umweltüberwachung (Immissionen) 41

      2.1 Luft und Niederschlag, Gamma-Ortsdosisleistung / Spurenanalyse 41

      2.2 Nord- und Ostsee 53

      2.3 Binnengewässer 61

      2.4 Böden 66

      2.5 Lebensmittel, Grund- und Trinkwasser 68

      2.6 Leitstelle für Arzneimittel und deren Ausgangsstoffe sowie Bedarfsgegenstände 77

      2.7 Abwasser und Klärschlamm 78

      2.8 Abfälle 80

      2.9 Inkorporationsüberwachung der Bevölkerung 82

III BERUFLICHE STRAHLENEXPOSITIONEN

1. Personendosisüberwachung 87

      1.1 Dosimeterüberwachte Personen 87

      1.2 Übersicht über beruflich strahlenexponierte Personen in kerntechnischen Anlagen 89

2. Überwachung des fliegenden Personals 89

3. Überwachung von Arbeitsplätzen mit erhöhter Radonexposition 92

4. Inkorporationsüberwachung beruflich strahlenexponierter Personen 92

IV STRAHLENEXPOSITION DURCH MEDIZINISCHE MAẞNAHMEN

1. Diagnostische Strahlenanwendungen 94

      1.1 Röntgendiagnostik 94

      1.2 Nuklearmedizin, Diagnostik 97

      1.3 Strahlenhygienische Bewertung der Strahlenexposition durch diagnostische Maßnahmen 99

      1.4 Magnetresonanztomographie als alternatives Untersuchungsverfahren 100

2. Therapeutische Strahlenanwendungen 101

      2.1 Therapie mit ionisierender Strahlung 101

      2.2 Therapie mit offenen radioaktiven Stoffen 101

3. Medizinische Forschung 101

4. Herzschrittmacher 101

V UMGANG MIT RADIOAKTIVEN STOFFEN UND IONISIERENDER STRAHLUNG

1. Grenzüberschreitende Verbringung radioaktiver Stoffe 104

      1.1 Übersicht über die Ein- und Ausfuhrstatistik radioaktiver Stoffe 104

      1.2 Einfuhrstatistik 104

      1.3 Ausfuhrstatistik 105

      1.4 Genehmigungen und Anzeigen 105

2. Beförderung radioaktiver Stoffe 106

      2.1 Übersicht über Beförderungsgenehmigungen und Transporte radioaktiver Stoffe 106

      2.2 Beförderung radioaktiver Stoffe im Schienen- und Schiffsverkehr der Eisenbahnen 107

3. Umgang mit radioaktiven Stoffen, Betrieb von Anlagen zur Erzeugung ionisierender Strahlung, Röntgeneinrichtungen und Störstrahler 108

      3.1 Anwender radioaktiver Stoffe 108

      3.2 Industrieerzeugnisse und technische Strahlenquellen 108

      3.3 Hochradioaktive Quellen (HRQ) 109

      3.4 Störstrahler 109

      3.5 Konsumgüter und sonstige Anwendungen 109

      3.6 Bestand radioaktiver Abfälle 109

4. Strahlenunfälle und besondere Vorkommnisse 110

VI NICHTIONISIERENDE STRAHLUNG

1. Elektromagnetische Felder - Forschung und aktuelle Themen 112

      1.1 Elektromagnetische Felder allgemein 112

      1.2 Statische elektrische und magnetische Felder 112

      1.3 Niederfrequente elektrische und magnetische Felder 112

      1.4 Hochfrequente elektromagnetische Felder 113

2. 0ptische Strahlung 116

      2.1 Solares UV-Monitoring 116

      2.2 Forschung 118

      2.3 Rechtliche Regelung von Solarienbetrieben 118

      2.4 Hautkrebspräventionsmaßnahmen 119

GRUNDLAGEN UND ALLGEMEINE ANGABEN

GESETZLICHE GRUNDLAGEN UND ERLÄUTERUNGEN

1. Erläuterungen zu den verwendeten Begriffen 124

      1.1 Messgrößen der Umweltradioaktivität und der Strahlenbelastung 124

      1.2 Strahlendosis und ihre Einheiten 124

      1.3 Die Messung der Strahlendosen 126

      1.4 Äußere und innere Bestrahlung 127

      1.5 Stochastische und deterministische Strahlenwirkung 128

      1.6 Genetische Strahlenwirkungen 128

      1.7 Induktion bösartiger Neubildungen 129

      1.8 Risikoabschätzung 129

      1.9 Strahlenschutzmaßnahmen - Die Strahlenschutzverordnung(Überarbeitungsstand 2018) 130

      1.10 Strahlenschutzmaßnahmen - Die Euratom-Grundnormen 131

2. Gesetze, Verordnungen, Richtlinien, Empfehlungen, Erläuterungen und sonstige Regelungen zum Strahlenschutz - Stand 31.12.2017 132

I GRUNDLAGEN ZUR NATÜRLICHEN UMWELTRADIOAKTIVITÄT

1. Natürlich radioaktive Stoffe in der Umwelt 138

      1.1 Natürlich radioaktive Stoffe im Boden 139

      1.2 Natürlich radioaktive Stoffe im Wasser 139

      1.3 Natürlich radioaktive Stoffe in der bodennahen Atmosphäre 142

      1.4 Natürlich radioaktive Stoffe in der Nahrung 143

      1.5 Natürliche Strahlenexposition 144

2. Zivilisatorisch veränderte natürliche Umweltradioaktivität 146

      2.1 Hinterlassenschaften und Rückstände aus Bergbau und Industrie 146

      2.2 Radon in Gebäuden 149

      2.3 Radioaktive Stoffe in Baustoffen und Industrieprodukten 150

II GRUNDLAGEN ZUR KÜNSTLICHEN UMWELTRADIOAKTIVITÄT

1. Quellen künstlicher Radioaktivität 156

      1.1 Kernwaffenversuche 156

      1.2 Tschernobyl - Strahlenexposition durch den Reaktorunfall 158

      1.3 Fukushima 159

      1.4 Anlagen nach Atomgesetz - Allgemeine Angaben 164

2. Aktivitätsmessungen und Messnetze 165

      2.1 Luft und Niederschlag, Gamma-Ortsdosisleistung 168

      2.2 Nord- und Ostsee 169

      2.3 Binnengewässer 170

      2.4 Böden 171

      2.5 Lebensmittel, Grund- und Trinkwasser 171

      2.6 Bedarfsgegenstände, Arzneimittel und deren Ausgangsstoffe 173

      2.7 Abwasser und Klärschlamm 173

      2.8 Abfälle 174

      2.9 Inkorporationsüberwachung der Bevölkerung 174

III GRUNDLAGEN ZUR BERUFLICHEN STRAHLENEXPOSITION

1. Personendosisüberwachung mit Dosimetern 176

2. Überwachung des fliegenden Personals 176

3. Überwachung von Arbeitsplätzen mit erhöhter Radonexposition 176

4. Inkorporationsüberwachung beruflich strahlenexponierter Personen 176

IVGRUNDLAGEN ZUR STRAHLENEXPOSITION DURCH MEDIZINISCHE MAẞNAHMEN

1. Diagnostische Strahlenanwendungen 178

      1.1 Röntgendiagnostik 178

      1.2 Nuklearmedizin, Diagnostik 179

      1.3 Strahlenhygienische Bewertung der Strahlenexposition durch diagnostische Maßnahmen 179

      1.4 Alternative Untersuchungsverfahren 179

      1.5 Qualitätssicherung 180

2. Therapeutische Strahlenanwendungen 180

      2.1 Strahlentherapie 181

      2.2 Nuklearmedizinische Therapie 181

3. Medizinische Forschung 181

4. Herzschrittmacher 182

V GRUNDLAGEN ZUM UMGANG MIT RADIOAKTIVEN STOFFEN UND IONISIERENDER STRAHLUNG

1. Grenzüberschreitende Verbringung radioaktiver Stoffe 184

2. Beförderung radioaktiver Stoffe 187

3. Umgang mit radioaktiven Stoffen, Betrieb von Anlagen zur Erzeugung ionisierender Strahlung, Röntgeneinrichtungen und Störstrahler 187

      3.1 Anwender radioaktiver Stoffe 187

      3.2 Radioaktive Stoffe in Konsumgütern und Industrieerzeugnissen 188

      3.3 Hochradioaktive Strahlenquellen (HRQ) 188

      3.4 Betrieb von Anlagen zur Erzeugung ionisierender Strahlung, Röntgeneinrichtungen und Störstrahler 189

      3.5 Bestand radioaktiver Abfälle 189

      3.6 Freigabe geringfügig radioaktiver Stoffe 190

4. Meldepflichtige besondere Vorkommnisse 190

VI GRUNDLAGEN ZUR NICHTIONISIERENDEN STRAHLUNG

1. Physikalische Eigenschaften und Wirkungen nichtionisierender Strahlung 192

2. Statische Felder 193

3. Niederfrequente Felder 193

4. Hochfrequente Felder 195

5. Optische Strahlung 197

      5.1 UV-Strahlung 198

      5.2 Sichtbares Licht 204

      5.3 Infrarotstrahlung 206

6. Grenzwerte 207

TABELLEN

I. Tabellen zur natürlichen Umweltradioaktivität 210

II. Tabellen zur künstlichen Umweltradioaktivität 216

III. Tabellen zur beruflichen Strahlenexposition 311

IV. Tabellen zur medizinischen Strahlenexposition 311

V. Tabellen zum Umgang mit radioaktiven Stoffen und ionisierender Strahlung 313

VI. Tabellen zur nichtionisierenden Strahlung 340

VII. Abkürzungen und Glossar 341

VIII. Physikalische Einheiten 351

Tabellenverzeichnis 357

查看更多

馆藏单位

中国计量科学院文献馆